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Abstract—Towards the sixth-generation (6G) wireless commu-
nication, unmanned aerial vehicles (UAVs) have been regarded
as an indispensable part due to its flexible deployment, wide
coverage, and high mobility. This also creates challenges for chan-
nel research. Scatterers are normally present in the structure of
clusters during UAV communication, and cluster-based channel
modeling is significant. In this paper, the variational Bayesian-
Gaussian mixture model (VB-GMM) algorithm is proposed for
clustering, which takes into account the time-space properties.
Cluster tracking is implemented using the multipath component
distance (MCD) algorithm. Intra- and inter-cluster characteriza-
tion, such as the number of clusters, cluster power distribution,
angular/delay offset, and angular/delay spreads, are well studied.
Moreover, cluster lifetime and birth-death (B-D) properties are
extracted and analyzed. Based on these cluster characteristics
acquired by machine learning (ML) method, a novel UAV-to-
ground communication channel model is proposed, and a four-
state Markov chain is also introduced to portray the evolution
of clusters. Simulation results match well with channel measure-
ments, which verifies the practicality of the proposed model. This
paper can give theoretical and technical support for the design
and evaluation of UAV-to-ground communication systems.

Index Terms—6G, UAV communications, cluster characteriza-
tion, channel modeling, machine learning.

I. INTRODUCTION

AS an essential part of the future sixth-generation (6G)
wireless communications and air-space-ground-sea inte-

grated network, unmanned aerial vehicle (UAV) technologies
are already attracting much attention [1]–[3]. Owing to its ad-
vantages of fast deployment, wide coverage, and high mobility,
UAV communications can be widely used in urban transporta-
tion, target detection, and emergency rescue. Moreover, it is
commonly recognized that the development, verification, and
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evaluation of 6G UAV-to-ground communication systems rely
heavily on precise channel models [4], [5]. Therefore, it is vital
to investigate the UAV-to-ground communication channels.

In radio propagation, the received multipath signals often
exhibit the cluster structure [6]. The cluster is a set of
multipaths in the wireless channel with similar characteristic
attributes, e.g., angle of arrival (AoA), angle of departure
(AoD), and delay. For UAV communication, channel clustering
means grouping the channel multipath based on above similar
characteristic parameters. Moreover, the prevalent approach
based on the geometry-based stochastic models (GBSMs) also
adopts the cluster-based methodology and has shown promis-
ing performance [7]–[12]. Some standardized documents also
use the cluster-based structure, such as IMT-2020 [13], 5GCM-
SIG [14], and 3GPP TR 38.901 [15]. Cluster-based channel
models can reduce algorithm complexity while maintaining
validity [16]. However, for UAV communications, the scatterer
distribution and fast time-varying characteristics illuminate the
complex structure of clusters, which creates difficulties for
cluster-based channel research. Therefore, effective clustering
and relevant analysis are essential.

Currently, wireless channel data present diverse and massive
characteristics. Compared to conventional methods, there is no
doubt that the machine learning (ML) method for clustering
research is a powerful tool [17]. So far, several algorithms have
been applied to channel clustering in different scenarios. The
earliest clustering method was based on the Saleh Valenzuela
(SV) model, but this model was oversimplified and did not
reflect the channel characteristics comprehensively [18], [19].
In wireless communications, the K-means algorithm has been
widely used, and the K-power-means (KPM) algorithm can be
obtained by considering the power of multipath components
(MPCs) to enhance their performance. The KPM algorithm
has found widespread application in clustering for various
channels, including indoor [20], outdoor-to-indoor (O2I) [21],
and high-speed railway (HSR) [22] environments. It belongs
to the category of hard clustering methods based on distance-
based classification. A soft clustering method, i.e., fuzzy C-
means (FCM), was employed for clustering analysis in the
staircase environment at 60 GHz [23]. It is well known that
MPCs of the same cluster can be modeled as a decaying power
delay profile (PDP). Therefore, shape-based cluster identifica-
tion can be used. The kurtosis measurement method was used
to identify clusters in channel impulse responses (CIRs), and
it applied a region competition approach to classify MPCs
into different clusters [24]. Unlike distance-based clustering
methods such as KPM and FCM, shape-based clustering
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methods do not need information on the cluster number.
However, it tends to focus only on the distribution of MPCs
in the delay domain, lacking angular information. In [25],
[26], a clustering approach based on image processing was
proposed, such as the Hough-transform algorithm and power-
angle-spectrum-based clustering and tracking (PASCT) algo-
rithm. In addition to the aforementioned traditional algorithms,
clustering algorithms based on the Gaussian mixture model
(GMM) have been increasingly utilized for clustering MPCs.
GMM-based algorithms have shown more excellent suitability
for channel clustering due to their ability to incorporate more
statistical features. In [27], [28], GMM was used for clustering
in O2I and HSR scenarios. However, there is limited literature
available that employs this more recent approach.

Furthermore, clusters may exhibit complex evolution be-
haviors, such as birth/death, movement, splitting, or merging.
In [29], an automatic tracking algorithm has been proposed
to track the MPCs in vehicle-to-vehicle (V2V) channels.
In [30], a distance-based tracking algorithm was proposed
to analyze the cluster lifetime, and the density-based spatial
clustering of applications with noise (DBSCAN) algorithm
was used for channel clustering. Besides, multipath component
distance (MCD) based tracking methods were applied in [31],
[32]. These studies have shown that this MCD-based track-
ing method can obtain better robustness and accuracy when
dealing with time-varying channel data.

For UAV-to-ground communications, the investigation of
channel clustering is still in its early stages. The clustering and
tracking of MPCs for UAV-to-ground communication channels
was presented in [33]. The potential MPCs were estimated
using the space-alternating generalized expectation maximiza-
tion (SAGE) algorithm based on measurements at 6.5 GHz
with 500 MHz bandwidth. Clustering methods and model-
ing approaches are conventional. Subsequently, the extracted
MPCs were clustered using the traditional KPM algorithm.
Besides, the cluster-based tracking (CBT) method was used
to quantify the survival length of the clusters. However, it
only considers information about the delay domain and lack
of angle information. Besides, it does not involve millimeter-
wave (mmWave) bands. In [34], the high-resolution-parameter-
estimation (HRPE) principle was used to obtain MPCs, and the
clustering method based on the MCD threshold was applied to
briefly analyze the channel characteristics. It also only focused
on the sub-6 GHz and used traditional clustering methods.

In general, current models primarily concentrate on con-
ventional terrestrial channels, such as indoor, V2V, and HSR
channels. However, the UAV channel has significant differ-
ences from conventional terrestrial channels, for example,
large elevation angles, arbitrary trajectories, etc. It leads to
significant differences in inter-cluster and intra-cluster char-
acteristics such as the number, statistical distribution, and
lifetime of clusters. Therefore, it is urgent to conduct appro-
priate clustering algorithm research and analyze the relevant
characteristics of UAV-to-ground communication channels.

Motivated by the above background and gaps of current
research, a novel ML-based clustering and modeling method
for 6G UAV-to-ground communication channels is proposed.
To the best of our knowledge, this is the first study that concen-

trates on the clustering of the UAV-to-ground communication
channels at both sub-6 GHz and mmWave bands. The main
contributions and novelties of this paper can be summarized
as follows.

1) Abundant time-varying UAV-to-ground communication
channel datasets at both sub-6 GHz and mmWave are
acquired by the ray-tracing (RT) modeling method, and
the VB-GMM algorithm is used to conduct channel
clustering. The algorithm automatically determines the
optimal cluster number and considers the delay and
space domains.

2) The inter- and intra-cluster characteristics of UAV-to-
ground communication channels are comprehensively
analyzed, including the number of clusters, cluster delay,
cluster power, intra-cluster angular and delay offset, etc.
The MCD-based tracking method is applied to capture
the evolving behavior of time-varying clusters, and the
lifetime of clusters is also analyzed.

3) A cluster-based UAV-to-ground communication channel
model is proposed, and a four-state Markov chain is
introduced to portray the evolution of clusters. Some
typical channel characteristics are studied based on the
proposed channel model, such as delay power spectrum
densities (PSDs) and root-mean-square (RMS) delay
spread (DS). Besides, the results of the channel mea-
surements are consistent with the simulations, verifying
the effectiveness of the model.

The remainder of this paper is organized as follows. Sec-
tion II presents the channel clustering and tracking algorithm.
In Section III, the simulation environment and clustering
results are illustrated. Section IV presents the intra-cluster,
inter-cluster, and time-varying evolution characteristics. Then,
a cluster-based channel model is proposed and implemented
in Section V. Finally, conclusions are drawn in Section VI.

Notation: Through the whole manuscript, (·)T represents
the transpose, tr(·) denotes the trace operation, (·)−1 represents
the inversion, ∥ · ∥ denotes the Euclidean norm, det(·) denotes
the determinant, and | · | represents the absolute value.

II. CHANNEL CLUSTERING AND TIME-VARYING
CLUSTERS TRACKING ALGORITHM

A. Description of Clustering Problem

Fig. 1 illustrates the clustering and evolution phenomenon of
MPCs in UAV-to-ground communications. Different types of
scattering clusters often affect radio propagation. For instance,
the ground station (GS) usually detects signals from various
propagation paths, such as tall buildings, bungalows, ground,
trees, vegetation, etc. In this scenario, the UAV acts as the
transmitter (Tx), while the GS consists of the ground user or
base station (BS) and serves as the receiver (Rx). Due to its
high flight altitude, UAV can transmit signals directly from
the Tx to Rx, which is also an advantage of UAV communi-
cation [2]. Therefore, the communication path always contains
the line-of-sight (LoS) component, which is considered as
LoS situations.

In this paper, the 6-dimensional (6-D) input data, i.e., the
delay, elevation angle of arrival (EAOA), elevation angle of
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Fig. 1. The architecture of clustering and evolution phenomenon for UAV-
to-ground communication channels.

departure (EAOD), azimuth angle of arrival (AAOA), azimuth
angle of departure (AAOD), and power are used to implement
channel clustering. The 6-D channel data of the i-th MPC
correspond to τi, θRi , θTi , ϕR

i , ϕT
i , and Pi, respectively. Our

target is to obtain the cluster labels for each MPC based on
the similarity between these 6-D parameters of the MPCs.
Furthermore, MPCs can be classified into separate clusters,
and the optimal number of categories is obtained. Additionally,
note that the following clustering method has excluded the LoS
path and only contains quantization for the non-line-of-sight
(NLoS) paths. Besides, due to the significant power difference
between the LoS path and other paths, we first extract the
LoS path from the multipath components and then cluster the
NLoS paths. Moreover, it is more in accordance with the idea
of standardized channel modeling [13]–[15].

B. VB-GMM Clustering Algorithm

With the increasing bandwidth of communication systems,
the diversity of scenarios, and the high mobility of terminals,
channel multipath presents big data characteristics and also
has a statistical distribution pattern. Traditional distance-based
clustering methods, such as K-means and FCM, can be ineffec-
tive in mining the statistical distribution pattern. In this paper,
a GMM-based clustering method is chosen. Due to differences
in the size of the 6-D channel raw data, the range has been
rescaled to [-1, 1] before clustering. Therefore, we can get
the normalized channel data matrix X , which contains some
sub-data x. The channel data is then inverse normalized after
the clustering has been completed.

The GMM assumes that each sub-data x is generated
based on the weight vector πi and the Gaussian probability
distribution function (PDF) of i-th component. The obtained
mixture model is given by [35]

p(x) =

K∑
i=1

πi ·N(x;µi,Σi) (1)

N(x;µi,Σi) =
exp

(
− 1

2 (x− µi)
T
Σ−1

i (x− µi)
)

√
(2π)d det(Σi)

(2)

where µi and Σi are the mean and covariance matrix of the
i-th Gaussian component, d is the dimension, and K is the
total number of components.

Therefore, the posterior probability can be calculated as

p(i | x) = πi ·N (x | µi,Σι)∑K
ι=1 πι ·N (x | µι,Σι)

. (3)

In order to cluster all MPCs, it is necessary to determine
the posterior probability, also known as responsibility. The
responsibility p(i|x) represents the probability that each MPC
is generated by the i-th Gaussian distribution. Each MPC
is assigned to the Gaussian distribution with the highest
posterior probability.

Finding responsibility is equivalent to solving a hidden-
variable problem. The parameters required for this solution
are {πi,µi,Σi}. It is usually solved by iterative optimization
using the Expectation Maximization (EM) algorithm. How-
ever, the EM algorithm requires cross-validation to determine
the optimal cluster, and the covariance matrix is probably
singular. In this paper, the VB method is used to solve the
problem, which automatically determines the optimal number
of clusters without the assistance of cross-validation and has
good convergence. For convenience, the covariance matrix Σi

in (2) has been rewritten as the precision matrix T i.
The Bayesian GMM can be obtained by applying prior

probability distributions to the parameters Θ = {π,µ,T }.
The Dirichlet prior for π and the Gauss-Wishart prior for
(µ,T ) are introduced. The Dirichlet prior is used for π with
the parameters αi as [27]

Dir (π | {αi}) =
Γ
(∑K

i=1 αi

)
∏K

i=1 Γ (αi)
·

K∏
i=1

παi−1
i (4)

where Γ(·) is the Gamma function. The parameter αi can be
interpreted as the number of valid prior observations associated
with each component of the mixture. The Gaussian-Wishart
prior for (µ,T ) is consists of the Gaussian distribution N(·)
and Wishart distribution W(·) as

p(µ,T ) =

K∏
i=1

N (µi;µ0, β0T i) · W (T i | v,V ) (5)

where V and v represent the scale matrix and the degrees
of freedom, respectively. The Wishart distribution is a gen-
eralization of the Gamma distribution in multiple dimensions,
and the Wishart prior is applied to account for the possible cor-
relations.

From the prior probability distributions to the parameters Θ,
it is evident that this Bayesian GMM only relies on hidden
random variables, namely h = (Z,π,µ,T ). Using the vari-
ational methodology, an approximation q(h) is computed for
the Bayesian GMM, which is expressed as a product of the
form as [27]

q(h) = q(Z) · q(π) · q(µ,T ). (6)
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Algorithm 1 Clustering Algorithm for UAV-to-Ground Com-
munication Channels.
Input: The normalized channel matrix X and the total

number of sampling points Sp.
Output: The labels of MPCs and the number of cluster.
1: for snapshot = 1: Sp do
2: Initialize the prior parameters, and the maximum itera-

tion number Miter;
3: while iter < Miter do
4: calculate the responsibility of expectation (Eq. 7);
5: apply current responsibility values to update model

parameter (Eq. 8–11);
6: calculate the difference of variational lower bound;
7: if the convergence condition is satisfied then
8: label = maxi{p(i|x)};
9: calculate the total number of labels;

10: break;
11: else
12: iter ++;
13: end if
14: end while
15: end for

The details on the updating of the parameters and cal-
culation process are referred in [35], and the result is as
follow [28]:

q(Z) =

N∏
n=1

K∏
i=1

rzinin (7)

q(π) = Dir (π | {αi}) (8)

q(µ,T ) =

K∏
i=1

q (T i) · q (µi | T i) (9)

q(T ) =

K∏
i=1

W (T i; ηi,U i) (10)

q (µi | T i) =

K∏
i=1

N (µi;mi, βiT i) (11)

where ηi and U i are parameters of the Wishart distribu-
tion representing the degrees of freedom and scale matrix,
respectively. Then, the best variational lower bound L(iter)
can be obtained by performing several iterations. Besides, the
best approximation q(h) to the true posterior p(h|x) can be
obtained by the iterative method [27]. Therefore, the label of
each MPC can be obtained. In summary, the detailed relevant
pseudo-code is shown in Algorithm 1. The input dataset X
is the normalized 6-D channel data in all snapshots. Each
for loop output is the clustering result under each snapshot,
each while loop is to find whether the iteration requirement is
satisfied, and finally channel clustering results for all snapshots
is obtained.

This paper uses the synthetic dataset to better illustrate the
performance of the VB-GMM method [28]. In the experiment,
a total of 8000 data points in three-dimensional (3-D) space
are randomly generated from the four clusters, and each cluster

(a) (b)

(c) (d)
Fig. 2. Synthetic dataset clustering results of (a) VB-GMM, (b) K-means, (c)
Spectral, and (d) DBSCAN clustering algorithms (the same colour represents
one cluster).

has 2000 sample points. The mean matrices of the gener-
ated matrix are (−1,−2,−2)T , (3,−2, 2)T , (−3, 1,−2)T ,
and (3, 1, 2)T , respectively. For the covariance matrix, it
is required that the matrix is semi-positive definite [35].

Thus, the generated covariance matrices is

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

, 2 −1 1
−1 1 −1
1 −1 4

,

2 0 0
0 1 0
0 0 1

, and

 2 0 −0.5
0 1 1

−0.5 1 2

.

Fig. 2 shows the clustering results of typical clustering
methods, i.e., VB-GMM, K-means, Spectral, and DBSCAN
algorithms. The same colors symbolize the same categories.
Due to random phenomena such as initialization, the random
seed of 4 is firstly set to facilitate the display in this paper.
It is difficult to separate the non-circular distribution for
the determination based on distance, such as the K-means
algorithm in Fig. 2(b). Besides, the K-means algorithm here
sets the number of clusters in advance to 4. The points that
are obviously different from each other but closer are often
regarded as one class. The identified clusters by the Spectral
and DBSCAN clustering methods are also confused, as shown
in Fig. 2(c) and (d). These approaches are less effective for
the data with Gaussian-like distribution properties, although
they do not require the number of clusters to be known in
advance. In addition, the K-means, Spectral, and DBSCAN
clustering algorithms are susceptible to falling into local
optimal solutions. The VB-GMM-based clustering algorithm
works better because it considers the overall information and
can be applied to any distribution theoretically.

Also, the effectiveness evaluation indexes of the relevant
clustering algorithms are calculated. The evaluation indexes
can be divided into internal and external effectiveness in-
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TABLE I
THE CLUSTERING ALGORITHM PERFORMANCE INDICES FOR

SYNTHETIC DATASETS

Methods
Internal effectiveness

indexes
External effectiveness

indexes
DBI CH SC NMI ARI JI FMI

VB-GMM 1.17 7659 0.51 0.83 0.87 0.90 0.90
K-means 0.99 6523 0.52 0.60 0.49 0.70 0.63
Spectral 1.42 2052 0.11 0.58 0.50 0.74 0.65

DBSCAN 5.42 125 0.34 0.02 0.004 0.82 0.45

dexes. The internal effectiveness indexes mainly evaluate the
tightness, connectivity, and overlap of the clustering result,
including Silhouette coefficient (SC), Davies-Bouldin index
(DBI), and Calinski-Harabasz index (CHI). External effective-
ness indexes are obtained by comparing the match between the
clustering results and external guidelines, including normal-
ized mutual information (NMI), adjusted rand index (ARI),
Jaccard index (JI), and Fowlkes-Mallows index (FMI). The
formulas for the related indicators can be found in [35], [36].
Note that smaller values for the results of the DBI imply
better clustering performance, while the opposite is the CH,
SC, NMI, ARI, JI, and FMI. Table I shows the results of the
evaluation indicators for the different clustering methods. The
bolded ones in each column represent the best performance.
Overall, the VB-GMM method presents better performance
for most of the indexes. The best results are presented for the
NMI, ARI, JI, FMI, and CH. The DBI and SC performance
is ranked second, not much different from the first. With
the help of the above indicators, it can be found that VB-
GMM performs better, overcomes the disadvantages of other
methods, and can obtain the cluster number automatically.

C. Time-Varying Cluster Tracking

For UAV-to-ground communications, clusters often undergo
birth-death (B-D) phenomena. Some indicators of the mobile
communication systems can be changed during flight. There-
fore, the evolution of the clusters needs to be depicted. In
previous methods, the Euclidean distance (ED) was often used
to measure the distance between components. However, for
the channel dataset, the data units of each parameter of the
MPCs are inconsistent, and the direct use of the ED can not
provide objective and accurate tracking results. Moreover, due
to the fast cluster change in UAV-to-ground communications,
considering only the two closest sampling points often results
in interrupted trajectories, which is unsuitable for further
analysis. In this paper, a tracking method based on MCD is
adopted. Here, the MCD can be calculated as [23]

MCDij =√
(MCDτ

ij)
2 + (MCDAoD

ij )2 + (MCDAoA
ij )2

. (12)

The MCD of delay is given by

MCDτ
ij = ζ · |τi − τj |

∆τmax
· τstd
∆τmax

(13)

where τstd is the standard deviation (std) of the MPCs delay,
∆τmax is the maximum value of the MPCs delay difference,
and ζ is the weight of the delay distance.

Fig. 3. The RT-based reconstructed environments.

Fig. 4. The satellite view with flight detail sketch for UAV communica-
tion scenarios.

The MCD of angular is shown as

MCD
AoA/AoD
ij =

1

2
·∥∥∥∥∥∥∥

 sin(θ
R/T
i ) cos(ϕ

R/T
i )

sin(θ
R/T
i ) sin(ϕ

R/T
i )

cos(θ
R/T
i )

−

 sin(θ
R/T
j ) cos(ϕ

R/T
j )

sin(θ
R/T
j ) sin(ϕ

R/T
j )

cos(θ
R/T
j )


∥∥∥∥∥∥∥ .

(14)
Moreover, the threshold in delay and the angular domain is

set to 0.2 µs and 0.5 rad, respectively. Due to the delay and
angular domain variations of clusters do not change signifi-
cantly considering the actual situation [33]. If the threshold is
beyond, the cluster is regarded as death. Similarly, if the past
cluster center can not be captured, the cluster is considered
newly generated.

III. CHANNEL DATASETS ACQUISITION AND
CLUSTERING RESULT

A. RT-Based Channel Model Datasets

RT is a deterministic channel modeling method based on
geometrical optics (GO) and uniform theory of diffraction
(UTD). It considers the interaction between rays and scatterers,
including reflection, scattering, and diffraction phenomena.
By tracing all possible ray paths, the MPCs between the
Rx and Tx can be determined. This enables an accurate
characterization of the overall propagation process. Besides,
RT can generate a large amount of data with high accuracy
and can match the actual channel data well [37].

The Software Park Campus of Shandong University (SDU)
in Jinan, China, was chosen for the UAV communication
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TABLE II
THE SIMULATION DETAILS AND PARAMETERS OF RAY-TRACING MODEL

Material
Parameters

Name Type Permittivity Conductivity (S/m) Thickness (m)
concrete one-layer dielectric 7.000 0.0150 0.300

glass one-layer dielectric 6.270 0.2287 / 0.1915 0.003
wet earth dielectric half-space 25.000 0.0200 —

vegetation
tree Leaf radius (m) Leaf thickness (m) Leaf density

0.050 0.0005 250

grass Blade radius (m) Blade length (m) Blade disity /area
0.002 0.460 900

Physical
Parameters

Tx altitude Rx altitude Flight speed Flight distance Sampling interval
50 m 2 m 10 m/s 300 m 1 m

Simulation
Parameter

Frequency Bandwidth Transmit power Antenna pattern Antenna max gain
28 GHz / 3.8 GHz 1 GHz / 160 MHz 10 dBm isotropic 0 dBi

Polarization Waveform Threshold Ray-spacing Reflection/Diffraction/Transmission
vertical sinusoid −160 dBm 0.25 6/0/1

scenarios. The channel propagation scenarios were constructed
using Wireless InSite software [38]. Fig. 3 shows the recon-
structed simulation scenarios, and Fig. 4 shows the satellite
view with flight detail sketch. The scenario includes various
buildings, vegetation, glass, etc, and the topography terrain
was also taken into account. The category of vegetation is
set to Biophysical. The height of trees is set to 5–12 m
according to the actual scenario, the height of grass is set
to 0.2 m, and the height of buildings is set to approximately
15–70 m. The overall layout of the buildings is complex. The
material is set to glass in some positions according to the actual
situation. The total area is approximately 650×470×80 m3.
The selection of material types and electromagnetic parameters
are referred to the International Telecommunication Union
(ITU) database [38], [39]. Moreover, we also introduced the
Lambertian diffuse reflection model to suit the actual radio
propagation. The UAV carries the Tx while the ground serves
as the Rx, and the UAV flight trajectory is also marked in
Fig. 4, crossing over many buildings. The simulation details
and parameter selection settings are shown in Table II.

B. Clustering Results

The proposed VB-GMM clustering algorithm can cluster
MPCs in both space and time domains, also considering power
influence. Fig. 5 shows the clustering results of MPCs in
sub-6 GHz and mmWave bands for one snapshot. The delay,
AAOA, and AAOD are selected for visualization to facilitate
the analysis, where the same clusters have the same color. It
is observed that both sub-6 GHz and mmWave bands have
effective clustering. As the mean and variance information
is considered, the clustering results correspond well to the
multipath propagation characteristics.

IV. CHANNEL CLUSTERING CHARACTERIZATION ANALYSIS
FOR UAV-TO-GROUND COMMUNICATIONS

A. Intra-Cluster Characterization

The results of channel clustering provide the cluster label
of each MPC as well as the total number of clusters. Further
computation allows us to obtain the intra-cluster characteriza-
tion. Table III summarizes the statistical modeling results of
the intra-cluster characteristics. The details are as follows.

(a)

(b)
Fig. 5. The clustering results in the visual aspect in (a) sub-6 GHz band and
(b) mmWave band.

1) The Number of Intra-Cluster MPCs: Fig. 6 shows the
cumulative distribution functions (CDFs) of the number of
intra-cluster MPCs. The normal distribution is a suitable model
for the number of intra-cluster MPCs. In sub-6 GHz band, the
mean value of the number of intra-cluster MPCs is 29.73 with
the std value of 28.44, while in mmWave band, the mean value
is 10.36 with the std value of 8.74. The number of intra-cluster
MPCs in sub-6 GHz is larger than that in mmWave. This is
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Fig. 6. The CDFs of the number of MPCs within cluster at different bands.

because the path loss of MPCs in mmWave is more significant
under the same received threshold, making it difficult to detect
more intra-cluster MPCs at the Rx end.

2) Intra-Cluster Power Decay Factor: It is well known
that the intra-cluster MPCs exhibit a linear sloped decaying
relationship for the power in dB with delay in µs, and
different numbers of MPCs tend to have different decreasing
trends [33]. Our desire is to build the relationship between
the intra-cluster power decay factor k and the MPCs number
within cluster C. Their relationship can usually be modeled
by exponential stochastic processes, whereas first-order expo-
nential (exp1) models are not sufficiently refined. Therefore,
we use the second-order exponential (exp2) model to picture
this relationship. It can be found that the exp2 model is
better thought out in both of the bands than exp1 model for
relevant data indicators, i.e., root mean square error (RMSE)
and R-square, and exp2 model can portray its relationship
well. Table III represents the relationship between intra-cluster
power decay factor and MPCs number within cluster for
different bands, and gives the values for exp2 model in details.

3) Cluster Rician K-factor: To better characterize the
power distribution of the intra-cluster MPCs, the cluster Rician
K-factor is adopted for modeling, and can be calculated as

Λ(dB) = 10 · log10(
max(Pc)∑C

c=1Pc −max(Pc)
) (15)

where C is the MPCs number within cluster and Λ is cluster
Rician K-factor in dB. Table III demonstrates that the normal
distribution effectively models the cluster Rician K-factor. The
mean values are 5.11 dB in sub-6 GHz and mmWave bands,
while the std values are 9.07 dB and 6.49 dB, respectively.

4) Intra-Cluster Delay Distribution: The cluster RMS DS
describes the time-dispersion characteristics of the MPCs
in UAV-to-ground communication channels. The intra-cluster
RMS DS is expressed as ς , and its calculation method is

ς =

√√√√∑C
c=1 P (τc) · τ2c∑C

c=1 P (τc)
−

(∑C
c=1 P (τc) · τc∑C

c=1 P (τc)

)2

. (16)

The intra-cluster RMS DS follows the log-normal distri-
bution, i.e., ln(ς) ∼ N (µDS , σDS). The unit of ς is µs.
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Fig. 7. The CDFs of delay offset in (a) sub-6 GHz band and
(b) mmWave band.

The mean and std parameters for the log-normal distribution
of intra-cluster RMS DS for mmWave are −2.56 and 0.65,
respectively. Meanwhile, the mean and std parameters for
sub-6 GHz are −1.98 and 0.46, respectively. These findings
indicate that delay extension within the cluster is insignificant.
The subpaths within the clusters have comparable delay, which
also demonstrates the efficacy of the clustering outcomes.
Additionally, the intra-cluster is more spread out in sub-6 GHz
compared to mmWave band.

Also, the delay offset is an essential factor in generating the
delay of subpaths in a cluster. It is defined as the difference
between the delay of the subpaths in the cluster and the
average delay of the cluster, i.e., τoff = τc − mean(τc).
Fig. 7 shows the CDFs of delay offset and the corresponding
fitting results for sub-6 GHz and mmWave. It is found that the
Laplace distribution with zero mean can model the delay offset
well [40]. The scale parameter χτ determines the width of the
delay offset distribution, which is calculated as the std value
divided by

√
2. Larger scale parameters imply wider distribu-

tions and more disperse. In this paper, the scale parameters
χτ are 0.29 and 0.24 for sub-6 GHz and mmWave bands.

5) Intra-Cluster Angular Distribution: Similar to the intra-
cluster MPCs delay characteristics, we use the RMS angular
spreads (ASs) and angular offsets to characterize the angular
distribution of the MPCs within the cluster. The log-normal
distribution is used to fit intra-cluster RMS ASs, and the
specific parameters are in Table III. Fig. 8 shows the CDFs
of cluster RMS ASs and the corresponding fitting results at
different bands. It can be found that cluster ASs are similar in
both bands. In terms of mean value and 80% share of RMS
ASs, both are consistent with the azimuth angular of arrival
spread (AAS) > the azimuth angular of departure spread
(ADS) > the elevation angular of arrival spread (EAS) > the
elevation angular of departure spread (EDS). This is because
the azimuth in the cluster comes from the various distributions
of buildings around the cluster, which results in a decentralized
azimuth distribution. Similarly, the elevation angular is mainly
influenced by the height of the UAV and the ground Rx,
resulting in a concentrated angular. In addition, the arrival
ASs are larger than the departure ASs because the scatterers
are mainly distributed at the ground end. Also, the angular
offset is introduced to generate the angle of the subpaths in
the cluster. Fig. 9 and 10 show the CDFs of angular offsets
and the corresponding fitting results. The detailed parameters



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. X, MARCH 2024 8

TABLE III
INTRA-CLUSTER CHANNEL CHARACTERIZATION PARAMETERS

Channel parameter Statistical distribution Value
sub-6 GHz @ 3.8 GHz mmWave @ 28 GHz

Number of intra-cluster MPCs Normal distribution
[mean µN , std σN ] µN = 29.73, σN = 28.44 µN = 10.36, σN = 8.74

Power decay factor Second-order exponential distribution
[a1 exp(b1x) + a2 exp(b2x)]

a1 = −32.15, b1 = −0.45,
a2 = −3.62, b2 = −0.03

a1 = −0.72, b1 = 0.01,
a2 = −9.05, b2 = −0.12

Cluster Rician K-factor (dB) Normal distribution
[mean µKF , std σKF ] µKF = 5.11, σKF = 9.07 µKF = 5.11, σKF = 6.49

Cluster
delay

distribution

RMS DS (µs) Log-normal distribution
[mean µDS , std σDS ] µDS = −1.98, σDS = 0.46 µDS = −2.56, σDS = 0.65

delay offset (µs) Zero-mean Laplace distribution
[scale χτ ] χτ = 0.29 χτ = 0.24

Cluster
angular

distribution

RMS AAS (rad) Log-normal distribution
[mean µAAS , std σAAS ] µAAS = −1.01, σAAS = 0.41 µAAS = −1.01, σAAS = 0.58

RMS EAS (rad) Log-normal distribution
[mean µEAS , std σEAS ] µEAS = −2.35, σEAS = 0.48 µEAS = −2.54, σEAS = 0.60

RMS ADS (rad) Log-normal distribution
[mean µADS , std σADS ] µADS = −1.67, σADS = 0.46 µADS = −1.91, σADS = 0.49

RMS EDS (rad) Log-normal distribution
[mean µEDS , std σEDS ] µEDS = −2.91, σEDS = 0.43 µEDS = −2.96, σEDS = 0.54

AAOA offset rad) Zero-mean Laplace distribution
[scale bAAOA] bAAOA = 0.73 bAAOA = 0.76

AAOD offset (rad) Zero-mean Laplace distribution
[scale bAAOD] bAAOD = 0.12 bAAOD = 0.13

EAOA offset (rad) Zero-mean Laplace distribution
[scale bEAOA] bEAOA = 0.38 bEAOA = 0.34

EAOD offset (rad) Zero-mean Laplace distribution
[scale bEAOD] bEAOD = 0.10 bEAOD = 0.10
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Fig. 8. The CDFs of cluster RMS ASs at different bands in (a) sub-6 GHz
band and (b) mmWave band.
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Fig. 9. The CDFs of (a) AAOA offset, (b) AAOD offset, (c) EAOA offset,
and (d) EAOD offset in sub-6 GHz band.

can also be found in Table III.

B. Inter-Cluster Characterization

The inter-cluster parameter also reflects the characteristics
of the channel between clusters. The details are as follow.

1) The Number of Clusters: The number of clusters also
reflects the abundance of clusters in UAV-to-ground com-
munication channels, which is related to the communication
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Fig. 10. The CDFs of (a) AAOA offset, (b) AAOD offset, (c) EAOA offset,
and (d) EAOD offset in mmWave band.

environment and the frequency band. Fig. 11 shows the
number of clusters and MPCs both of the bands based on
the clustering results. The number of MPCs and clusters have
a similar relationship. The maximum number of clusters at
sub-6 GHz band can be up to 9, and the maximum number at
mmWave band can be up to 8. Besides, the number of MPCs
at mmWave band is relatively small. The number of clusters is
counted as shown in Fig. 12. The maximum probability of the
number of clusters at sub-6 GHz is 6, accounting for 39%. The
maximum probability of the number of clusters at mmWave
is 5, accounting for 45%.

2) Inter-Cluster Power and Delay Characteristics: Based
on the different clusters obtained, the power and delay are
divided. Table IV gives the relative delay and power for
different clusters. In order to eliminate the effect of the LoS
path at different locations, the power and delay are derived
by comparing them with the delay and power of the LoS
paths [33]. The power is significantly lower in mmWave band
in simulation. Therefore, fewer MPCs are perceived at the
Rx end, and it can be modeled with fewer clusters. Besides,
compared to the traditional terrestrial channel model, the UAV-
to-ground communication channels have more extensive delay
range, which indicates that the effect of tall buildings in the
distance on propagation can be perceived. Moreover, the delay
and power of cluster index of 3–5 are relatively similar, which
demonstrates that these may be coming from buildings with
different orientations but with similar relative distances.

3) Inter-Cluster Angular Distribution: The space distribu-
tion of cluster locations is observed. The cluster appearance
angles are similar for sub-6 GHz and mmWave bands. The
AAOA is approximately uniformly distributed in the range
[−180°, 180°). The EAOA is mainly distributed in [85°, 100°],
with sporadic distribution in other places greater than 100°.
The AAOD is distributed in the range of [−180°, 50°]. The
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Fig. 11. The time-varying results of (a) MPCs number and (b) cluster number.

(a) (b)
Fig. 12. The count histogram of the cluster number in (a) sub-6 GHz band
and (b) mmWave band.

main reason is that the high buildings are distributed in this
range, so the first bounce is concentrated in this angle range.
The EAOD is mainly distributed in [90°, 130°] and shows a
decreasing trend. The key reasons for this are the three relative
positions of the scatterers, the Rx and UAV, and the distribution
of the scatterers in the environment. Overall, it can be assumed
that the distribution of scatterers in the horizontal plane is
approximately uniform. This makes AAOA and AAOD also
more uniformly distributed over the whole angle. In the
vertical dimension, scatterers are mainly distributed at the
near-ground end, e.g., vegetation, bungalows, and trees. Thus,
EAOA and EAOD are distributed over a range of angles and
concentrated near [85°, 130°].
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TABLE IV
INTER-CLUSTER POWER AND DELAY CHARACTERISTICS

cluster
index
(NO.)

sub-6 GHz mmWave
Relative

delay (µs)
Relative

power (dB)
Relative

delay (µs)
Relative

power (dB)
1 0.0977 −19.6694 0.0667 −14.6786
2 0.2336 −28.8640 0.1987 −25.8935
3 0.4371 −35.9763 0.4227 −32.7006
4 0.7062 −38.9410 0.8348 −34.1254
5 1.1425 −42.5525 1.3065 −34.9582
6 1.6719 −50.0298 1.5096 −37.6226
7 1.9996 −54.5792 1.6351 −40.3471
8 2.3094 −57.1457 2.2187 −64.0877
9 2.4600 −61.6080 — —

C. Time-Varying Evolution Characterization

The high mobility of the UAV during flight leads to the
fast time-varying characteristics of the channel. Therefore, the
clusters undergo the B-D phenomenon. Fig. 13 shows the
cluster tracking results for UAV flight time of 30 s. The new
cluster index (CLID) is assigned to a new cluster, and the
old cluster inherits the CLID of the previous cluster [28]. The
number of whole clusters observed in the two bands differs
throughout the time interval. Nearly 500 and 330 clusters
are detected for sub-6 GHz and mmWave, respectively. The
continuous distance on the x-axis indicates the life period of
the relevant cluster. Many clusters exist only for a time period
and there is clear B-D phenomenon. Also, many clusters exit
only a stationary region and can not be tracked consistently. In
addition, there is the LoS component that persists throughout
flight as also shown in Fig. 13.

Fig. 14 shows the CDFs of the cluster lifetime for the UAV
flight time of 30 s. This paper uses the log-normal distribution
to analyze and model the lifetime. It can be found that the
lifetime of the clusters that account for 80% of the total
number of clusters for sub-6 GHz and mmWave are 1.0 s and
1.1 s, respectively. It illustrates the relatively short lifetime of
the clusters during the whole UAV flight, especially in sub-
6 GHz band.

Moreover, this paper introduces a Markov chain to well
characterize the dynamic clusters evolution of UAV-to-ground
communication channels. The state transition chart is shown
in Fig. 15. Four typical states conform to the characteristics
of UAV-to-ground communication channel evolution. By cal-
culating the channel data, the state shift probability matrices
for the specific sub-6 GHz T1 and mmWave T2 are shown as

T1 =


ξ100 ξ101 ξ102 ξ103
ξ110 ξ111 ξ112 ξ113
ξ120 ξ121 ξ122 ξ123
ξ130 ξ131 ξ132 ξ133

 =


0.05 0.28 0.06 0.61
0.09 0.36 0.08 0.47
0.04 0.36 0.08 0.52
0.04 0.39 0.09 0.48



T2 =


ξ200 ξ201 ξ202 ξ203
ξ210 ξ211 ξ212 ξ213
ξ220 ξ221 ξ222 ξ223
ξ230 ξ231 ξ232 ξ233

 =


0.29 0.47 0.11 0.13
0.28 0.49 0.09 0.14
0.20 0.59 0.07 0.14
0.23 0.44 0.12 0.21

,
where ξ1ij and ξ2ij represents the transfer probability from
the i-th state to the j-th state for sub-6 GHz and mmWave,
respectively. It can be observed that the probability of new
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Fig. 13. Time-varying cluster tracking result in (a) sub-6 GHz band and
(b) mmWave band.
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Fig. 14. The CDFs of cluster lifetime in (a) sub-6 GHz band and
(b) mmWave band.

clusters’ generation and B-D phenomenon are higher regard-
less of which state they belonged to in the past, due to the
large amount of scatterers and the rapid movement of the
UAVs. This phenomenon also appears in fast-moving HSR
communication scenarios [28].

V. CLUSTER-BASED CHANNEL MODEL IMPLEMENTATION

In this section, a cluster-based UAV communications chan-
nel model is proposed based on the comprehensive channel
characterization presented in Section IV. In the implementa-
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Fig. 15. Four-state Markov chain (S0: neither birth nor death; S1: only birth;
S2: only death; S3: both birth and death) [28].

tion, the model parameters are used to obtain the LoS path,
scatterer clusters, and MPCs within the clusters.

The specific model realization process is shown in Fig. 16.
In the realization process, the initial step is to set the basic
information, such as environmental parameters, frequency
band, UAV flight trajectory, and 3-D distance between the Tx
and Rx. Then, LoS paths and scatterer clusters need to be
generated. The number of initial clusters is set to the maximum
probability value based on the distribution presented in Fig. 12.
Moreover, based on the inter-cluster characteristics, parameters
such as delay and power of the clusters are generated by
stochastic process [33]. According to the intra-cluster charac-
teristics shown in Table III, the specific parameters of MPCs
can be acquired through the corresponding distribution, such
as the MPCs number within cluster, delay, power, etc. Once we
have these parameters, we can derive the CIR by combining
all the generated clusters and their corresponding intra-cluster
MPCs [33]. The time-varying CIR is expressed as

h(t, τ) =
√
P0(t)e

−jϕ0(t)δ(τ − τ0(t))

+

I(t)∑
i=1

Ci(t)∑
c=1

√
Pi,c(t)e

−jϕi,c(t)δ(τ − τi(t)− τi,c(t))

(17)
where I(t) is the number of clusters and Ci(t) is the MPCs
number in i-th cluster. The power and phase of the c-th ray in
the i-th cluster are Pi,c and ϕi,c, respectively. The cluster delay
and excess delay are τi and τi,c. The Dirac delta function is
δ(·). Also specifically, the LoS ray parameters are set to P0,
ϕ0, and τ0, respectively. Note that the power, delay, and phase
are both time-varying parameters with the flight.

In the evolutionary process, different clusters are given
different lifetimes firstly, and the Markov chain generates the
next state based on the current state. The state transfer diagram
is shown in Fig. 15. Based on the state of generation, determine
whether birth and death have occurred. When the Markov state
is 0, it is assumed that the clusters have not changed. When the
state is 1, we randomly generate new clusters and then generate
intra-cluster MPCs based on the new clusters. The number of
new clusters is generated using the Poisson process [41]. The
lifetime of past clusters decreases with flight. The lifetime of
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Fig. 16. The flowchart for the implementation of cluster-based B-D evolution
channel model.

new clusters is randomly generated according to log-normal
distribution. When the state is 2, some clusters are nulled based
on the cluster’s lifetime. When the state is 3, the B-D process
of states 1 and 2 is accomplished. Therefore, simulation data
of 10 s is generated based on the above steps.

Fig. 17 shows the delay PSDs of UAV-to-ground commu-
nications. It can be seen that the power at different periods is
related to the delay at different time moments. The delay PSDs
differ at t = 3 s and t = 5 s. The presence of significant LoS
paths can be observed, and the distributions also differ between
mmWave and sub-6 GHz bands. The number of MPCs may
be concentrated at certain delays due to the presence of
dense scatterers. Furthermore, there is considerable signal
attenuation at mmWave band compared to sub-6 GHz band.

Fig. 18 compares the CDFs of RMS DS with the proposed
model, measurement data, and reference model. RMS DS can
be calculated from the square root of the second central mo-
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Fig. 17. The delay PSDs of the proposed UAV-to-ground channel model at
t = 3 s and t = 5 s in (a) sub-6 GHz band and (b) mmWave band.

ment of the CIR generated by the stochastic process described
above. It can be observed that the simulation and measurement
channels exhibited good consistency. For 80% of the RMS
DS, the difference between measurement and simulation data
is 3 ns, which is relatively similar and acceptable. Note that
the channel measurement data in Fig. 18 is from [42], and the
frequency band selected here is 2.585 GHz, which has been
used in current cellular networks. Besides, this data is obtained
from the suburban scenario UAV-to-BS measurement envi-
ronment. Due to the heavy weight of mmWave measurement
equipment and the UAV’s limited load, few mmWave UAV-
to-ground communication channel measurements are available.
Channel measurements at mmWave band will be carried out
in the future. Moreover, our model is more consistent with the
actual data compared to the WINNER+ suburban macrocells
channel model [43]. Also, the RMS DS variance of the
UAV-to-ground communication channels is smaller compared
to the WINNER+ terrestrial channels. Overall, the proposed
model can reflect the properties of the actual channel well.
In addition, complex process operations and massive random
parameters in large-scale GBSM are avoided. Therefore, this
proposed model can provide a reference for UAV-to-ground
communication network optimization and planning, and be
used for channel simulator and emulator of dynamic UAV-
to-ground communications.

VI. CONCLUSIONS

In this paper, a ML-based clustering and modeling method
for UAV communication channels has been proposed. Com-
pared with traditional methods, the proposed VB-GMM
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Fig. 18. The CDFs of RMS DS with simulation and measurement data.

method represents the actual channel situation well, and the
number of clusters can be obtained automatically. Besides,
the process of clustering and analyzing has considered space-
time characterization and two typical frequency bands, i.e.,
sub-6 GHz and mmWave. The relationship between the intra-
cluster MPCs and the fading slope has been analyzed. A
comprehensive discussion of the number of MPCs, RMS
DS/AS, delay/angle offset, and cluster power distributions has
been conducted well. We also have analyzed the evolution of
clusters during UAV flight. The log-normal distribution has
been applied to fit the lifetime of the dynamic clusters, and
clusters have frequent B-D phenomena during UAV flight.
Based on the comprehensively analyzed intra-cluster, inter-
cluster, and dynamic evolution characteristics, we have carried
out the cluster-based UAV-to-ground communication channel
modeling. A four-state Markov chain has been introduced to
portray the B-D process in detail. Besides, channel measure-
ment has been well-fitted to the simulation data. Therefore,
these results can provide accurate and low-complexity support
for the design and evaluation of future 6G UAV communica-
tion systems.
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[43] J. Meinilä et al., “WINNER+ final channel models,” docment
CELTIC/CP5-026 D5.3, 2010.

Zhaolei Zhang received the B.E. degree in elec-
tronic information engineering from Shandong Uni-
versity of Science and Technology, Qingdao, China,
in 2022. He is currently pursuing his master’s degree
with the School of Integrated Circuits, Shandong
University, Jinan, China. His current research inter-
ests include channel measurements and modeling,
unmanned aerial vehicle (UAV) communications,
and artificial intelligence in wireless communica-
tions.

Yu Liu (Member, IEEE) received the Ph.D. degree
in communication and information systems from
Shandong University, Jinan, China, in 2017. From
2015 to 2017, she was a visiting scholar with
the School of Engineering and Physical Sciences,
Heriot-Watt University, Edinburgh, U.K.. From 2017
to 2019, she was a Postdoctoral Research Associate
with the School of Information Science and Engi-
neering, Shandong University, Jinan, China. Since
2019, she has been an Associate Professor with the
School of Integrated Circuits, Shandong University,

Jinan, China. Her main research interests include nonstationary wireless
MIMO channel modeling, high mobility channel characterization and model-
ing, and AI based channel modeling.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. X, MARCH 2024 14

Cheng-Xiang Wang (Fellow, IEEE) received the
B.Sc. and M.Eng. degrees in communication and
information systems from Shandong University,
China, in 1997 and 2000, respectively, and the Ph.D.
degree in wireless communications from Aalborg
University, Denmark, in 2004.

He was a Research Assistant with the Hamburg
University of Technology, Hamburg, Germany, from
2000 to 2001, a Visiting Researcher with Siemens
AG Mobile Phones, Munich, Germany, in 2004, and
a Research Fellow with the University of Agder,

Grimstad, Norway, from 2001 to 2005. He was with Heriot-Watt University,
Edinburgh, U.K., from 2005 to 2018, where he was promoted to a professor
in 2011. He has been with Southeast University, Nanjing, China, as a
professor since 2018, and he is now the Executive Dean of the School of
Information Science and Engineering. He is also a professor with Pervasive
Communication Research Center, Purple Mountain Laboratories, Nanjing,
China. He has authored 4 books, 3 book chapters, and over 550 papers
in refereed journals and conference proceedings, including 27 highly cited
papers. He has also delivered 27 invited keynote speeches/talks and 18
tutorials in international conferences. His current research interests include
wireless channel measurements and modeling, 6G wireless communication
networks, and electromagnetic information theory.

Dr. Wang is a Member of the Academia Europaea (The Academy of
Europe), a Member of the European Academy of Sciences and Arts (EASA),
a Fellow of the Royal Society of Edinburgh (FRSE), IEEE, IET and China
Institute of Communications (CIC), an IEEE Communications Society Dis-
tinguished Lecturer in 2019 and 2020, a Highly-Cited Researcher recognized
by Clarivate Analytics in 2017-2020. He is currently an Executive Edito-
rial Committee Member of the IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS. He has served as an Editor for over ten international
journals, including the IEEE TRANSACTIONS ON WIRELESS COMMU-
NICATIONS, from 2007 to 2009, the IEEE TRANSACTIONS ON VEHICU-
LAR TECHNOLOGY, from 2011 to 2017, and the IEEE TRANSACTIONS
ON COMMUNICATIONS, from 2015 to 2017. He was a Guest Editor of
the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,
Special Issue on Vehicular Communications and Networks (Lead Guest
Editor), Special Issue on Spectrum and Energy Efficient Design of Wireless
Communication Networks, and Special Issue on Airborne Communication
Networks. He was also a Guest Editor for the IEEE TRANSACTIONS ON
BIG DATA, Special Issue on Wireless Big Data, and is a Guest Editor for
the IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND
NETWORKING, Special Issue on Intelligent Resource Management for 5G
and Beyond. He has served as a TPC Member, a TPC Chair, and a General
Chair for more than 30 international conferences. He received 16 Best Paper
Awards from IEEE GLOBECOM 2010, IEEE ICCT 2011, ITST 2012, IEEE
VTC 2013 Spring, IWCMC 2015, IWCMC 2016, IEEE/CIC ICCC 2016,
WPMC 2016, WOCC 2019, IWCMC 2020, WCSP 2020, CSPS2021, WCSP
2021, IEEE/CIC ICCC 2022, and IEEE ICCT 2023.

Hengtai Chang (Member, IEEE) received the B.Sc.
and Ph.D. degrees from the School of Informa-
tion Science and Engineering, Shandong University,
China, in 2016 and 2021, respectively. He is cur-
rently a Post-Doctoral Research Associate at Purple
Mountain Laboratories, China, and a Post-Doctoral
Research Associate at the China National Mo-
bile Communications Research Laboratory, South-
east University, China. His current research interests
include UAV communications, wireless propagation
channel measurements and channel modeling, and

B5G/6G wireless communications.

Ji Bian (Member, IEEE) received the B.Sc. degree
in electronic information science and technology
from Shandong Normal University, Jinan, China, in
2010, the M.Sc. degree in signal and information
processing from Nanjing University of Posts and
Telecommunications, Nanjing, China, in 2013, and
the Ph.D. degree in information and communication
engineering from Shandong University, Jinan, China,
in 2019. From 2017 to 2018, he was a visiting
scholar with the School of Engineering and Physical
Sciences, Heriot-Watt University, Edinburgh, U.K.

He is currently an Associate Professor with the School of Information Science
and Engineering, Shandong Normal University, Jinan, China. His research
interests include 6G channel modeling and wireless big data.

Jingfan Zhang received the B.E. degree in School
of Electronic Information Engineering, Shandong
University of Science and Technology, Qingdao,
China, in 2020. He is currently pursuing his master’s
degree with School of Integrated Circuits, Shandong
University, Jinan, China. His current research in-
terests include UAV communications and wireless
propagation channel measurements and modeling.


