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RIS-Assisted MIMO Channel Measurements and
Characteristics Analysis for 6G Wireless

Communication Systems
Yingzhuo Sun, Cheng-Xiang Wang, Fellow, IEEE, Yingjie Xu, Lijian Xin, Member, IEEE, Jialing Huang, Jie

Huang, Member, IEEE, Qibo Qin, Xinyu Gao, Bolun Guo, Tie Jun Cui, Fellow, IEEE, and Yunfei Chen, Senior
Member, IEEE

Abstract—Reconfigurable intelligent surface (RIS) can ma-
nipulate the electromagnetic (EM) waves in wireless channels
and thus is promising for the sixth generation (6G) wireless
communication systems. However, there exists little research
on RIS channel measurements, which are important for the
communication system design. In this paper, channel measure-
ments are carried out in anechoic chamber, outdoor, and indoor
environments. For anechoic chamber measurements, the insertion
loss, EM response reciprocity, and received power are analyzed.
It is found that RIS can fulfill EM response reciprocity. It is also
found that the performance of RIS beamforming in the coplane
configuration is better than that in the non-coplane configuration.
In outdoor measurements, the cumulative distribution functions
(CDFs) of large-scale parameters (LSPs) are obtained to explore
the relationship between LSPs and heights. Results show that
the RIS-user equipment (UE) channel is more sensitive to the
height variation than the base station (BS)-RIS channel. For
indoor measurements, the angular power spectral density (PSD),
spatial cross-correlation function (CCF), and channel capacity
are investigated. It is found that RIS with near-field coding
and a larger size can bring a higher gain than RIS with far-
field coding and a smaller size. The normalized power and code
differences between near-field and far-field coding are defined to
verify the RIS Rayleigh distance. It can be found that the value
of the theoretical RIS Rayleigh distance is almost the same as the
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distance where the defined normalized differences become zero.

Index Terms—6G wireless communication systems, channel
measurements, channel characteristics, reconfigurable intelligent
surface (RIS).

I. INTRODUCTION

RECONFIGURABLE intelligent surface (RIS), also
known as intelligent reflecting surface (IRS) [1] or large

intelligent surface (LIS) [2], is a type of artificial electromag-
netic (EM) surface. RISs consist of periodically arranged EM
units whose phase and amplitude responses can be manipu-
lated to control incident EM waves in real time [3], [4]. Owing
to the advantages such as easy to deploy, energy-efficient, and
low-cost, it has been regarded as a promising key technology
for the sixth generation (6G) wireless communications [5]–[7].
RIS has been applied in different ways and scenarios. In [8], it
was used to provide extra spatial degrees of freedom through
configuring the elements irregularly. In [9], it was employed
in the optical wireless communication system. In the area of
vehicular communications, RIS also plays an important role.
In [10], it was used in the vehicular communication systems to
implement the robust transmission with statistical channel state
information. In [11], a method of RIS selection in vehicular
communication network was introduced to realize a higher
ergodic capacity. In [12], the authors jointly optimized the
beamforming and the vehicle trajectory to minimize the power
consumption. In [13], a joint optimization problem considering
both the vehicle power allocation and RIS beamforming was
discussed to maximize the throughput.

Channel modeling is important for the verification of key
technologies and the evaluation of communication perfor-
mances [14]–[19]. Meanwhile, wireless channel measurements
aim to explore channel characteristics and thus help to con-
struct the channel model more accurately. A large amount of
experiments were conducted in anechoic chambers to explore
the performance of manipulated RIS in different frequency
bands or in different ways [20]–[22]. A comprehensive survey
on the RIS experiments and channel measurements, channel
characteristics analysis, as well as large-scale path loss models
and small-scale multipath fading channel models was provided
in [23]. Recently, more channel measurements have been
conducted to further explore RIS channel characteristics. For
example, in [24], channel measurements were conducted in the
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millimeter wave (mmWave) indoor scenario. Different multi-
path parameters were estimated and the angular power spec-
tral density (PSD) was analyzed. In [25], the non-intelligent
reflecting surfaces which were simply made of metal foils
were employed in the THz indoor scenario. The measurement
results showed that surfaces with larger sizes performed better
than those with small sizes. The reflection losses and the
coverage ratio were also calculated and analyzed. In [26], an
efficient algorithm used to configure the RIS over the air was
proposed. The indoor and outdoor tests were both conducted
and the high power gain was observed in both two scenarios.
In [27], a path loss model based on the radar cross section
theory was proposed and validated. The distance between
the transmitter and the receiver, the reflection angles, the
effective area of RIS elements were considered in the proposed
model. The measurement results validated the accuracy of the
proposed model. In [28], a more effective path loss model was
proposed and validated at the mmWave band. The properties of
a single unit cell including scattering performance and power
consumption were evaluated. The measurement results also
confirmed that the model can characterize the power radiation
of one unit cell. In [29], RIS was employed for measurements
at 35 GHz to verify that RIS could combat multipath fading. A
two-path propagation model was proposed, which considered
both the direct path and the assisted path. Four types of RISs
employing different configuration capabilities were introduced
and compared through simulation results. In [30], the impact of
RIS employed as the transmitter (Tx) in the indoor mmWave
channel was investigated through experiments. The impacts
of transmitting RIS on path loss, angular spreads (ASs), and
delay spread (DS) were studied in particular. In [31], the
authors proposed a RIS-assisted physical layer key generation
algorithm in the multi-user communication system.

However, most existing channel measurements were con-
ducted to study the performance of the RIS-assisted wireless
communication systems or investigate the characteristics of
the RIS-assisted channel in indoor and anechoic chamber
scenarios. There are very few outdoor RIS channel measure-
ments and even fewer segmented measurement experiments in
outdoor environments. A RIS-assisted communication system
is composed of the base station (BS), RIS, and user equip-
ment (UE). This forms a BS-RIS-UE cascaded channel. It
has two segments including BS-RIS sub-channel and RIS-
UE sub-channel. It should be noticed that the words “Tx”
and “the receiver (Rx)” here mean the channel measurement
equipment which can transmit/receive the wireless signals with
radio frequency (RF) chains. When conducting the segmented
channel measurements for BS-RIS sub-channel, Tx is placed
at the BS position and Rx is placed at the position of
RIS to measure the channel between BS and RIS. When
conducting the segmented channel measurements for RIS-UE
sub-channel, Tx is set at the position of RIS and Rx is set at
the position of UE to measure the channel between RIS and
UE. Previous works only focused on the cascaded channel, not
its segments. Moreover, limited small-scale fading analysis has
been conducted in existing RIS channel measurements.

To fill the research gaps, the RIS-assisted single-input
single-output (SISO) channel measurements in anechoic cham-

bers, multiple-input multiple-output (MIMO) segmented chan-
nel measurements in outdoor environments, and MIMO cas-
caded channel measurements in indoor environments are car-
ried out at 5.4 GHz. The employed RIS size has 24×24
elements. Far-field and near-field coding methods are designed
for the experiments. Far-field coding only considers the phase
differences caused by the projection differences of the incident
wave on the array. Near-field coding considers the phase
differences among RIS elements caused by the differences
of the distance from each RIS element to Rx. The detailed
calculation methods will be given later in section II. The main
contributions and novelties of this paper are summarized as
follows.

• Experiments in anechoic chambers are conducted to ex-
plore the EM characteristics of RIS. The EM response
reciprocity of RIS is validated. The insertion losses
under different coding modes are measured. The received
power is compared in the coplane and the non-coplane
conditions to validate the passive reflection characteristic
of RIS.

• In outdoor scenarios, the BS-RIS channel measurements
and RIS-UE channel measurements are conducted to
explore channel characteristics on different RIS heights.
Space alternating generalized expectation maximization
(SAGE) algorithm is utilized to process the measurement
data to obtain the multipath component parameters. Fur-
thermore, the studied large-scale parameters (LSPs) of
the two segmented channels include DS, ASs, and K-
factor. Their cumulative distribution functions (CDFs) on
different heights are presented and compared.

• RIS-assisted cascaded channel measurements are also
conducted in indoor scenarios. Important characteristics
including channel capacity and spatial cross-correlation
function (CCF) are investigated and compared under
different conditions.

The remainder of this paper is organized as follows.
Section II describes channel measurement environments and
measurement system setups. Section III presents the measure-
ment data processing methods employing the high-resolution
SAGE algorithm. Section IV presents the analysis results.
Finally, conclusions are drawn in Section V.

II. RIS-ASSISTED CHANNEL MEASUREMENTS

A. Measurement System Setups

The diagram of a time domain channel sounder is shown
in Fig. 1. Tx is composed of a vector signal transceiver
(VST) with a frequency range of 9 kHz–6 GHz band, a
power amplifier (PA), a RF switch controller, a uniform planer
array (UPA) or a horn antenna, and a global positioning
system (GPS) Rubidium clock. Rx side includes an uniform
cylindrical array (UCA), a RF switch controller, a low noise
amplifier (LNA), a VST that can store the received signals, and
a GPS Rubidium clock. A summary of the detailed equipment
and parameters is given in Table I.
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TABLE I
CHANNEL SOUNDER EQUIPMENT AND PARAMETERS.

Tx/Rx Equipment Parameters

Tx

VST 9 kHz–6 GHz band,
160 MHz bandwidth

PA 500 MHz-6 GHz band,
35 dB gain

Tx antenna

Anechoic chamber/Indoor
measurements: Horn antenna

Indoor/Outdoor measurements:
Dual-polarized UPA with 32

elements
Tx switch
controller 32 channels in serial

Rx

VST 9 kHz–6 GHz band,
160 MHz bandwidth

LNA 2 GHz-6 GHz band, noise floor
0.8 dB, 38 dB gain

Rx antenna

Anechoic chamber/Indoor
measurements: Horn antenna

Indoor/Outdoor measurements:
Dual-polarized UCA with 64

elements
Rx switch
controller

2 channels in parallel and 32
channels in serial

B. RIS Hardware and Coding Methods

There are four pieces of RIS hardware and they can
be combined into different arrays with different sizes and
shapes. One piece of RIS has 12×12 elements with a size
of 0.312 m×0.312 m. It has a central frequency of 5.4 GHz
with a bandwidth of 320 MHz. Each unit can be encoded with
4 different reflecting additive phases (0 coding: 0◦, 1 coding:
104.2◦, 2 coding: 181.7◦, and 3 coding: 284◦). There are two
different coding modes, the far-field coding mode and the near-
field coding mode. The continuous phase of each unit can be
obtained under these two modes, which is calculated as [32]

θfar
ij = mod (k(dT

ij − dT
0 − vij · vR), 2π) (1)

and
θnear
ij = mod (k(dT

ij − dT
0 − dR

0 + dR
ij), 2π) (2)

 

Fig. 1. The diagram of the measurement system setup.

TABLE II
MAPPING RELATIONSHIPS BETWEEN CONTINUOUS PHASES

AND RIS CODES.

Continuous phases Discrete phases RIS codes
(0◦, 52.1◦ ] ∪ (322◦, 360◦ ] 0◦ 0

(52.1◦, 142.95◦ ] 104.2◦ 1
(142.95◦, 232.85◦ ] 181.7◦ 2
(232.85◦, 322◦ ] 284.0◦ 3

RIS

Port1

Port2

VNA

(a)

Metal plate

Port1

Port2

VNA

(b)

Fig. 2. Insertion loss measurements of (a) RIS and (b) the metal plate.

where k denotes the wave number. The distances between
Tx/Rx and each unit are denoted as dT

ij and dR
ij . The distances

between the RIS center and Tx/Rx are denoted as dT
0 and

dR
0 . The unit vector pointing from the RIS center to Rx

is denoted as vR. The vector pointing from the RIS center
to each unit is denoted as vij . The discrete phase is the
closest phase to the continuous one among the four phases
corresponding four codes. The mapping relationship between
the continuous angle values and the RIS codes is given in
Table II. Another important property of the RIS hardware is
that it can reverse the polarization direction of the impinging
EM wave, meaning that a vertically/horizontally polarized EM
wave will be converted into a horizontally/vertically polarized
EM wave after being reflected by RIS.

C. RIS Measurements in Anechoic Chambers

In order to study the EM characteristics of the RIS, the
measurement experiments are first carried out in an anechoic
chamber. Note that only one piece of RIS is used in anechoic
chamber measurements.

1) Insertion Loss Measurements: The insertion loss mea-
surement scenario is shown in Fig. 2. Horn antennas are
placed at the Tx side and the Rx side, connecting Port1 and
Port2 of the vector network analyser (VNA), respectively. The
coordinate values of the Tx antenna and the Rx antenna are
[0, 2.45, 0] and [3.3, 0, 0], respectively. The EM responses S21

under different coding modes are recorded. Then, the RIS
is replaced by a metal plate with the same size. The EM
responses S21 in this case are also obtained. Therefore, the RIS
insertion losses under different coding modes in the bandwidth
are computed as the difference between S21 of RIS and that
of the metal plate.

2) EM Response Reciprocity Measurements: The scenario
for EM response reciprocity measurement is shown in Fig. 3.
The center of RIS is defined as the axis origin, and Port1
of the VNA connects to a horn antenna with a location of
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Port1

Port2

RIS
X

Z

Y

 

Fig. 3. EM response reciprocity measurement scenario of the RIS.

TABLE III
MEASUREMENT CASES FOR RECIPROCITY VERIFICATION.

Horn antenna positions on the Tx side and Rx side (m)

Port1: [0,2.45,0]

Port2: [1.77,1,0] θ = 90◦

Port2: [1.6,0.58,0] θ = 90◦

Port2: [3.3,0,0] θ = 60◦

Port2: [1.6,0.58,0] θ = 40◦

Port2: [3.3,0,0.34] θ = 45◦

Port2: [3.3,0,-0.46] θ = 45◦

[0, 2.45, 0]. The Port2 of the VNA is also connected to a horn
antenna that is placed at different positions. Meanwhile, angles
between the normal line of the RIS and the x-axis can also
be changed through rotating RIS. A summary of the detailed
measurement cases is shown in Table III. The code of the
RIS is adjusted according to the position information of the
horn antennas. The amplitudes and phases of S12 and S21 are
recorded at the same time. The EM response reciprocity of
the RIS is examined by comparing amplitudes and phases of
S12 and S21.

3) Received Power Measurements: The received power
reflected by RIS from different directions is measured in an
anechoic chamber equipped with a rotating platform and VNA.
Two configurations are studied which are coplane and non-
coplane configurations. The measurements of two configura-
tions are given in Fig. 4, and the illustration of these two
configurations is shown in Fig. 5. Tx and the normal line of
RIS can constitute a plane which is denoted as PTx-Z. Rx and
the normal line of RIS can constitute a plane which is denoted
as PRx-Z. Coplane configuration means that PTx-Z and PRx-Z are
the same plane. Non-oplane configuration means that PTx-Z and
PRx-Z are different planes. The coordinate system based on the
RIS center is also shown in Fig. 4. The Rx side position is
fixed in two conditions. To shift the direction of the main
lobe, codes are changed according to the expected direction.
The angles of deviation from the normal line of RIS are 30◦,
60◦, and 90◦. The measurement layout is shown in Table IV.

D. Outdoor RIS Segmented Channel Measurements

Segmented measurements of RIS-assisted channels in the
outdoor environments are conducted. Because RIS tends to be
deployed higher than UE but lower than BS to achieve better
coverage [43], the path loss and LSPs of the BS-RIS channel
and the RIS-UE channel are studied for different RIS heights.
The outdoor measurement scenarios are shown in Fig. 6 (a).

1) BS-RIS Measurements: Tx is located at the position of
BS at the B1 building with a height of 33 m, as shown in

Rx
RIS

Tx

X

Z

Y

(a)

Tx

Rx

RIS

Z

Y

X

(b)

Fig. 4. Received power measurements in an anechoic chamber under
(a) the coplane configuration and (b) the non-coplane configuration.

Y

X

Z

Rx

Tx

RIS

 !"#$( %"#$)

(a)

Y

X

Z

RxTx

RIS

 !"#$

 %"#$

(b)

Fig. 5. Illustration of received power measurements under (a) the
coplane configuration and (b) the non-coplane configuration.

Fig. 6 (b). Rx antenna array equipped with 64 antenna ele-
ments is placed along Route 1 to receive the multipath signals.
Note that Route 1 is evenly divided into 30 measurement
positions marked as RIS1 to RIS30. The Rx antenna array
is lifted from 3 m to 9 m with 1 m interval.

2) RIS-UE Measurements: In the RIS-UE sub-channel, Tx
antenna array is located at RIS28 position on the heights of
3 m to 9 m above the ground. Rx antenna array is separately
placed at Route 2 to receive the multipath signals, as shown
in Fig. 6 (c). Route 2 is made of 30 evenly distributed
measurement positions from UE1 to UE30.

E. Indoor RIS Cascaded Channel Measurements

RIS-assisted cascaded channel measurement scenarios are
illustrated in Fig. 7. The detailed channel measurement pa-
rameters are shown in Table V. Scenarios of two sub-channels
are shown in Fig. 8 (a) and Fig. 8 (b).

1) SISO Cascaded Channel Measurements: As illustrated
in Table V, in Case1, RIS is placed in the propagation
environment according to the diagram in Fig. 8 (c), where the
angle between the normal line of RIS and the line connecting
RIS center and Tx is 45◦. The horn antenna on the Tx side
transmits the EM signal sequences. The reflected EM signals
are adjusted to the direction of Rx side by RIS. RIS is coded
with far-field and near-field coding modes to compare the
received power difference between two coding modes.

2) MIMO Cascaded Channel Measurements: To investigate
more detailed channel characteristics, cascaded channel mea-
surements under the condition of Tx/Rx equipped with mul-
tiple antennas are also carried out. The non-mirror reflection
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TABLE IV
COORDINATE VALUES IN RECEIVED POWER

MEASUREMENTS.

Condition Rx position (m) Tx position (m)

Coplane [0.17,0,0.14]
[0,0,14]

[-7,0,12.12]
[-12.12,0,7]

Non-coplane [0.08,0,0.28]
[0,0,14]

[0,-7,12.12]
[0,-12.12,7]

RIS1

RIS2
2 m

Route 1 (60 m)

UE1

Route 2 (60 m)

Building B1

Sidewalk

BS (33 m)

Building A6

Building A5

Parking lot

Central building

RIS30

UE2

UE30

2 m

110 m

(a)

Rx
Tx

(b)

Rx

Tx

(c)

Fig. 6. The scenarios of (a) overall measurements, (b) BS-RIS channel
measurements, and (c) RIS-UE channel measurements.

scenario is also introduced to be compared with the mirror
reflection scenario. It is illustrated in Fig. 8 (d). The incident
angle can be converted by means of rotating RIS. RISs with
different sizes (24×24 elements and 12×36 elements) are also
employed to investigate the influences of RIS’s size.

III. MEASUREMENT DATA PROCESSING

A. Acquisition of CIR

To obtain the channel impulse response (CIR), measurement
system calibration and data processing are needed to eliminate
the effect of measurement equipment [33], [34]. The transmit-
ted signal is denoted as x(t). The response of the measurement
system is defined as g(t). The CIR is defined as h(t). The
received signal is y(t). The Fourier transforms of x(t), g(t),

Restroom Exist

GlassMeeting room

Metal Pillar WindowAisle

11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616 1717 1818 1919 2020

BS UE RIS/Metal plate

Fig. 7. The diagram of the measurement routes and positions in an
indoor scenario.

TABLE V
INDOOR CASCADED CHANNEL MEASUREMENTS

PARAMETERS.

Height The same height for Tx, Rx, and the RIS center (1.7 m)
Case1 Mirror reflection, RIS with 24 × 24 elements
Case2 Non-RIS/non-metal plate
Case3 Mirror/non-mirror reflection, RIS with 24 × 24 elements
Case4 Mirror/non-mirror reflection, RIS with 24 × 24 elements
Case5 Mirror reflection, RIS with 12 × 36 elements

h(t), and y(t) are denoted as X(f), G(f), H(f), and Y (f),
respectively. H(f) can be calculated as

H(f) =
Y (f)

X(f)G(f)
. (3)

Then the CIR can be calculated as

h(t) = IFFT(H(f)) (4)

where IFFT(·) is the inverse Fourier transform.

B. Channel Parameter Estimation

To extract the wireless multipath component (MPC) pa-
rameters, the high-resolution SAGE algorithm is implemented
[35], [36]. Assume that there are M specular plane waves in
the propagation environment, and that the numbers of the Rx
antenna elements and Tx antenna elements are denoted as U
and S. The received signal Y(t) can be written as

Y(t) =
M∑
m=1

c(ΩRx
m )Amc(ΩTx

m )T exp(j2πνmt)x(t− τm)

+

√
N0

2
N(t) (5)

where Am =

[
αm,1,1 αm,1,2
αm,2,1 αm,2,2

]
= [αm,p1,p2 ] represents the

polarization matrix and p1, p2 ∈ [1, 2] are chosen from two
linear and orthogonal polarization orientations, νm denotes
the Doppler frequency of the mth MPC, ΩRx

m and ΩTx
m are

the angle of arrival and angle of departure of the mth MPC,
respectively, τm is the delay of the mth MPC, c(ΩRx

m ) and
c(ΩTx

m ) are antenna responses of the Rx and Tx antenna array,
respectively, which can be measured in an anechoic chamber,
N(t) ∈ CU×S is the standard complex white Gaussian noise
with PSD N0. Therefore, the parameter set to be extracted for
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Tx

RIS

(a)

RIS

RX

(b)

Aisle

1 2 3 4 5

1.2 

m45°

(c)

Aisle

1 2 3 4 5

1.2 

m
30°

(d)

Fig. 8. The measurement scenarios of (a) the Tx-RIS link, (b) the
RIS-Rx link, (c) mirror reflection measurement (45◦), and (d) non-
mirror reflection measurement (30◦).

the mth MPC is Θm = [Am,Ω
Rx
m ,ΩTx

m , τm, νm], which can
be estimated by using the SAGE algorithm in [34]. Note that
ΩRx
m includes the azimuth angle of arrival (AoA) φRx

m and the
elevation angle of arrival (EoA) θRx

m of the mth MPC, and
ΩTx
m includes the azimuth angle of departure (AoD) φTx

m and
the elevation angle of departure (EoD) θTx

m of the mth MPC.

C. Channel Characteristics

The root mean squared (RMS) DS is a second-order statis-
tic, which is capable of describing the dispersion of the delay
PSD. By using the estimated parameters, the DS can be
formulated as

τrms =

√√√√∑M
m=1 |αm|2τ2m∑M
m=1 |αm|2

−

(∑M
m=1 |αm|2τm∑M
m=1 |αm|2

)2

. (6)

The RMS AS can be used to illustrate the dispersion of the
angular PSD. It is calculated by

σrms =

√√√√∑M
m=1 |αm|2Ω2

m∑M
m=1 |αm|2

−

(∑M
m=1 |αm|2Ωm∑M
m=1 |αm|2

)2

. (7)

Using (7), σrms can be obtained from the estimated angle
Ωm ∈ {φRx

m , θRx
m , φTx

m , θTx
m }.

The spatial CCF is directly related to the channel charac-
teristics [39]. The correlation coefficient between the CIR hi
of the ith Tx (Rx) antenna element and the CIR hj of the jth
Tx (Rx) antenna element is calculated by

ρhi,hj =
E{(hi − hi)(hj − hj)}√

E{(hi − hi)2}E{(hj − hj)2}
(8)

where E{·} denotes the expectation operator. hi and hj denote
the mean values of hi and hj , respectively.

To study the relationship between the Rayleigh distance of
RIS and received power difference under far-field and near-
field coding modes, the normalized power difference and the
normalized coding matrices difference are used. Note that
this measurement is carried out employing horn antennas.
The normalized difference of coding matrices at the nth
measurement point is calculated as

cn =
‖Cn,far −Cn,near‖F

max
n
‖Cn,far −Cn,near‖F

(9)

where Cn,far and Cn,near are the coding matrices of the far-
field coding mode and the near-field coding mode. Similarly,
the normalized difference of power at the nth measurement
point can be calculated as

pn =
|pn,far − pn,near|

max
n
|pn,far − pn,near|

(10)

where pn,far and pn,near denote the received power of the far-
field coding mode and the near-field coding mode at the nth
measurement point, respectively.

The end-to-end channel capacity is an important metric
to evaluate the performance of the channel. This metric can
reflect the general effects of channels, such as spatial CCF,
Doppler spectrum, delay PSD, cross-polarization power ratio
(XPR). The channel capacity of the measurement data can be
expressed as [40]–[42]

C =
1

K

K∑
k=1

log2 det(IMR +
ρ

MT
H(k)H(k)H) (11)

where ρ is the signal-to-noise ratio (SNR), K denotes the
number of frequency points, MT and MR are the numbers
of Tx antennas and Rx antennas, respectively, H(k) is the
channel transfer function matrix on the kth frequency point
obtained after normalizing the original matrix by the factor of

1
MT·MR·K , and IMR is a unit matrix of order MR.

IV. CHANNEL MEASUREMENT RESULTS AND ANALYSIS

In this section, channel measurement results are analyzed to
explore the characteristics of RISs, RIS segmented channels,
and RIS-assisted cascaded channels.

A. Anechoic Chamber RIS Measurements

To investigate the EM properties of the RIS, the measure-
ments for the RIS composed of 12×12 units are carried out in
an anechoic chamber, and the insertion loss of RISs and the
EM reciprocity are studied as follows.

1) Insertion Loss: The insertion loss is shown in Fig. 9. In
Fig. 9 (a), the values of S21 are shown. It can be observed
that S21 of the metal plate is larger between 5.24 GHz and
5.56 GHz than S21 of RIS. Furthermore, S21 of RIS employing
2 and 3 coding patterns are more stable than those under 0
and 1 coding patterns.

When calculating the insertion loss, the S21 value of the
metal plate is used as a benchmark. The insertion values of RIS
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Fig. 9. Measurement results of (a) the S21 values and (b) the insertion
losses of RIS.

under different coding states are calculated as the differences
between the S21 value of RIS and that of the metal plate.
From Fig. 9 (b), the insertion loss under 0 coding fluctuates
significantly within the measured bandwidth. The insertion
losses under 2 and 3 coding are smaller than those under 0
and 1 coding states. The insertion loss of the RIS measured
at 5.4 GHz is 2.84 dB by calculating the mean values of the
insertion loss over all the coding states.

2) EM Response Reciprocity: In order to evaluate the EM
response reciprocity, the magnitudes and the phases of both
S21 and S12 are measured. Hence, EM response reciprocity of
RIS can be validated by comparing S12 and S21. Specifically,
S21 matches with S12 very well, as shown in Fig. 10 (a).
For simplicity, only three positions are studied in the figure.
Furthermore, the error between S21 and S12 can be easily
calculated. Then the CDFs of absolute errors on all mea-
sured frequency points for different positions are plotted in
Fig. 10 (b). The value error is small within±0.2 dB. Similarly,
the phase of S21 matches that of S12 very well as shown in
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Fig. 10. Absolute values of (a) S21 and S12 on different positions
and (b) errors between S21 and S12.

Fig. 11 (a). At the same time, the error of the phase response
between S21 and S12 is also small, which fluctuates within ±2◦

as shown in Fig. 11 (b). It can be observed that the absolute
values and the phases of S21 and S12 are almost the same,
which confirms that RIS has the EM response reciprocity.

3) Received Power on Different Directions: In this mea-
surement, the received power on different directions after
adjusted by RIS is recorded, as depicted in Fig. 12. It can be
observed that the received power of the coplane condition is
much higher compared with that of the non-coplane condition.
Furthermore, the difference between the power of the main
lobe and that of side lobe under the coplane condition is
higher than that of the non-coplane condition. Actually, the
phenomenon mentioned above reflects the passively adjustable
properties of RIS. It means that RIS can only control the
reflecting direction of EM waves based on the rule of mirror
reflection. In other words, the more the adjusted direction of
the main lobe deviates from the mirror reflection direction, the
less power is received. As a result, when Tx and Rx are not
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Fig. 11. Phases of (a) S21 and S12 on different positions and (b)
errors between S21 and S12.

in the same plane with the normal line of RIS, the received
power and the main lobe decrease dramatically.

B. Outdoor RIS Segmented Channel Measurement Results

Outdoor measurements of BS-RIS and RIS-UE sub-
channels are carried out at 5.4 GHz. For each segmented
channel, the delay PSD, and LSPs such as DS, azimuth angle
spread of arrival (ASA), azimuth angle spread of departure
(ASD), elevation angle spread of arrival (ESA), elevation angle
spread of departure (ESD), and K-factor under different RIS
heights are studied as follows.

1) Angular PSD: The angular PSDs of BS-RIS1 and RIS-
UE1 on the height of 5 m are shown in Fig. 13. The
angular PSD is calculated employing the bartlett estimation
method. The accuracy of the measurement results can be
guaranteed after comparing the measurement results with the
real environment.

2) LSPs Analysis: The CDFs of LSPs of BS-RIS sub-
channel at different Rx heights are given in Fig. 14, including
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Fig. 12. Received power of (a) the coplane condition and (b) the
non-coplane condition.

DS, K-factor, ASA, ESA, ASD, and ESD. For clarity, the
results of only three heights are shown in Fig. 14. The conclu-
sions are drawn as follows. Firstly, due to the similar scatterer
distribution at different Rx heights, there is little difference
among the mean values of DS on different Rx heights, so
are the variance values. Secondly, given that the propagation
environment is more open as the Rx height increases, the
proportion of the LOS components increases, which leads
to the increase of the K-factor. Thirdly, the mean values of
the ASA and ESA decrease when the Rx height increases.
The main reason is that the number of scatterers around Rx
antennas decreases with higher Rx heights, and the reflection
path from the ground will become weaker, resulting in a
smaller extension of the angle of arrival. Moreover, due to the
similar scatterer distributions at different measurement points
on the same Rx height, the variances of the ASA and ESA
are all small on different heights. The variance of ASA varies
form 1.55 to 1.9 and that of ESA varies from 1.25 to 1.6,
respectively. Fourthly, the mean values and variance values of
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Fig. 13. The measured angular PSDs of (a) BS-RIS1 channel at the
height of 5 m and (b) RIS-UE1 channel at the height of 5 m.

both the ASD and ESD almost remain unchanged at different
Rx heights. The reason for this is that the distance between
Tx and Rx is far and the scattering environment on the Tx
side hardly changes even if Rx antennas rise.

Similarly, CDFs of the LSPs of the RIS-UE sub-channel at
different Rx heights are also shown in Fig. 15. For clarity,
the results of only three heights are shown in Fig. 15. Firstly,
because the scatterer distribution changes little at different Rx
heights, the mean values of DS are close to each other. More-
over, the variance of DS becomes smaller with the increase of
the Rx height. The reason is that scatterer distributions from
the DS perspective on the same height change little among
different measurement points. Secondly, the K-factor increases
with the increase of the Rx height. The reason is that the ratio
of the LOS path becomes higher with the increase of the RIS
height. Thirdly, the mean and variance of the ASA and ASD
are almost unchanged when the Rx height increases, as the
horizontal position between Rx and Tx is unchanged, and the
LOS path is the main component. Therefore, the scatterers at
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Fig. 14. CDFs of the LSPs for the BS-RIS sub-channel: (a) DS, (b)
K-factor, (c) ASA, (d) ESA, (e) ASD, and (f) ESD.

Rx and Tx side in the azimuth angle will not change with the
increase of height or the change of the Rx point. Fourthly, the
mean values and the variance values of both ESA and ESD
increase with the increase of the Rx height. The reason is that
the ground reflection path increases with the increase of the
Rx height, leading to the increase of the elevation ASs.

In Fig. 16, the correlation coefficients of different LSPs of
BS-RIS and RIS-UE sub-channels over the height difference
are shown. It can be found that the autocorrelation function
of RIS-UE decreases faster than that of BS-RIS sub-channel.
This is mainly because the height of Tx in BS-RIS sub-channel
is much higher than the variation of Rx height. However, the
difference between Tx height and Rx height of RIS-UE sub-
channel is smaller. As a result, RIS-UE sub-channel is more
sensitive to the variation of the Tx height.

C. Indoor RIS Cascaded Channel Measurement Results

The power of Rx antennas, angular PSD, spatial CCF, and
channel capacity are studied as follows.

1) Received Power: All 16 vertically polarized Tx antennas
are used to transmit the EM signals. Since the RIS can cause
polarization reversals of waves, 24 horizontally polarized Rx
antennas are employed to receive EM waves coming from RIS.
At the same time, because metal plates cannot change the po-
larization of EM wave, 24 vertically polarized antennas which
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Fig. 15. CDFs of the LSPs for the RIS-UE sub-channel: (a) DS, (b)
K-factor, (c) ASA, (d) ESA, (e) ASD, and (f) ESD.

have the same location as the 24 horizontally just mentioned
on the UCA are employed at Rx side. When conducting the
cascaded channel measurement, the metal plate and the RIS
are individually placed at the same reflection position. The
RIS has the same size as the metal plate. The average power
of each Rx antenna is shown in Fig. 17 (a) under the mirror
reflection scenario. Obviously, the average received power of
the non-RIS/non-metal plate-assisted channel is the lowest, but
the average received power of the metal plate-assisted channel
is larger than that of channel assisted by RIS with 24×24
elements. The average power of three channel measurements is
-83.22 dBm, -80.48 dBm, and -83.19 dBm. The reason is that
the whole metal plate is a conductor and can approximately
reflect EM signals towards the Rx antennas under the mirror
reflection condition, but the effective area of the RIS is much
smaller than that of the metal plate even if the RIS can generate
a narrow beam towards Rx antennas. Except for the direct
signal, more scattering signals can be received by the antennas
after being reflected by the wall. Therefore, the reflection gain
of the metal plate is greater than the regulation gain of the
RIS. Hence, the received power increases after being reflected
by the metal plate.

The average power of each Rx antenna is further studied
in Fig. 17 (b) under the non-mirror reflection scenario. The
average power of the non-RIS/non-metal plate-assisted chan-
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Fig. 16. The autocorrelation function over the vertical direction for
(a) the BS-RIS sub-channel and (b) the RIS-UE sub-channel.

nel, metal plate-assisted channel, and RIS-assisted channel
is -83.23 dBm, -82.67 dBm, and -82.31 dBm, respectively.
Compared with the channel measurements under the mirror
reflection scenario, the function of the metal plate is limited,
and the beamforming of the RIS is more significant.

It can be observed in Fig. 18 that normalized differences of
power and code matrix decrease with the measurement points
extending in a similar trend. They both fall to almost zero at
about the distance of 25 m. Meanwhile, the Rayleigh distance
of RIS with 24×24 elements is calculated as L = 2D2

λ where
L is the Rayleigh distance, D is the length of the diagonal
line, and λ is the wavelength. So the Rayleigh distance of the
measured RIS is 28 m. As a result, it can be deduced that
measuring the differences of power or code matrices between
two coding modes can be a good method of estimating the
Rayleigh distance.

2) Angular PSD: The angular PSDs of the non-RIS/non-
metal plate-assisted channel, metal plate-assisted channel, and
RIS-assisted channel are further explored. Specifically, the
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Fig. 17. Power of Rx antenna indexes for (a) the mirror reflection
scenario and (b) the non-mirror reflection scenario.

angular PSD of the non-RIS/non-metal plate-assisted channel
observed at Rx5 is given in Fig. 19. Multipaths can be
observed due to the reflectors in the office. Furthermore, the
angular PSDs of the metal plate-assisted channel and RIS-
assisted channel are shown in Fig. 20 (a) and Fig. 20 (b) in
the mirror reflection scenario. We can observe a target wave
of around (90◦, 90◦) even if the beamforming power of the
metal plate-assisted channel is lower than that of the RIS-
assisted channel. However, the side lobe of beam for metal
plate-assisted channel is larger than that of the RIS-assisted
channel. The results also confirm that more scattering signals
can be received by the antennas after being reflected by the
wall in the metal plate-assisted channel measurement. Channel
measurements under the non-mirror reflection scenario are
carried out for the metal plate-assisted channel and the RIS-
assisted channel. Measurement results are given in Fig. 20 (c)
and Fig. 20 (d). The metal plate and RIS can bring new MPCs,
but the directions and strengths of the MPCs are different.
In the non-mirror reflection condition, most of the signals
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Fig. 19. Angular PSD of the non-RIS/non-metal plate-assisted chan-
nel measurements in an indoor scenario.

reflected by the metal plate cannot be received by Rx antennas,
but RIS can intelligently adjust waves to Rx. Specifically, the
RIS can bring a gain of about 7 dB while the metal plate can
bring a gain of about 3 dB. Thus, the RIS is superior to the
metal plate under the non-mirror reflection condition.

3) Spatial CCF: In Fig. 21, the spatial CCF based on 4
vertically polarized Tx antennas which are distributed on one
column of the 4 × 4 Tx antenna array and one horizontally
antenna element at Rx side is calculated. In the mirror re-
flection condition, the spatial CCF of the Tx antennas of the
RIS-assisted channel is similar to that of the metal-assisted
channel. This also confirms that the metal plate can play
the role of the RIS in mirror reflection scenarios. Due to
the existing multiple reflectors in the office environment, the
MPCs coming from different directions are received by the Rx
antenna array. Therefore, the spatial CCF between Tx antennas
for the non-RIS/non-metal plate-assisted channel is smaller
than that under the metal plate-assisted channel and RIS-
assisted channel, as illustrated in Fig. 21 (a). In Fig. 21 (b),
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Fig. 20. Angular PSDs of indoor channel measurements in (a) the
metal plate-assisted mirror reflection scenario, (b) the RIS-assisted
mirror reflection scenario, (c) the metal plate-assisted non-mirror
reflection scenario, and (d) the RIS-assisted non-mirror reflection
scenario.

the spatial CCF of the metal plate-assisted channel is lower
than that of the channel assisted by RIS with 24×24 elements
under the near-field coding, but close to that of the non-
RIS/non-metal plate-assisted channel when it is in the non-
mirror reflection scenario.

One important issue to be studied in the cascaded channel
measurements is the impacts of the RIS size and coding modes
on the RIS-assisted channel, which is given in Fig. 22. First,
since RIS with 24×24 elements is composed of more units
than the RIS with 12×36 elements, the beam is narrower.
Therefore, the spatial CCF for the channel assisted by RIS with
24×24 elements is larger than that of the channel assisted by
RIS with 12×36 elements. Second, since all Rx positions are
located in the near-field of RIS EM radiation, the beam formed
by the RIS under the near-field coding mode is narrower
than that formed under the far-field coding mode. Therefore,
the spatial CCF of the RIS-assisted channel using near-field
coding is higher than that of the RIS-assisted channel using
far-field coding.

4) Channel Capacity: In Fig. 23, when the reflecting object
is placed at the non-mirror reflection situation, the channel
capacity of the metal plate-assisted channel is lower than
that of the 24×24-unit RIS-assisted channel using the near-
field coding and close to that of the non-RIS/non-metal plate-
assisted channel, which is consistent with the received power
and the angular PSD results. Note that the channel capacity
is very small for different cascaded channels, as the path loss
is taken into account in the CIR when calculating channel
capacity based on (11).

Furthermore, Fig. 24 shows the impacts of the RIS size
and coding mode on the channel capacity of the RIS-assisted
channel. Thus, a larger RIS brings a higher gain for Rx
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Fig. 21. Spatial CCFs in (a) mirror reflection scenarios and (b) non-
mirror reflection scenarios.

antennas, so the channel capacity is larger. Also, the beam
gain formed by the RIS using the near-field coding mode is
larger than that formed by the far-field coding mode. Hence,
the channel capacity of the RIS-assisted channel using the
near-field coding is larger.

V. CONCLUSIONS

In this paper, we have conducted various RIS-assisted chan-
nel measurements, including the EM response measurements
in the anechoic chamber, the segmented MIMO channel mea-
surements in outdoor environments, and the cascaded channel
measurements in an indoor environment. The SAGE algorithm
has been used to extract the MPC information in indoor and
outdoor measurements.

In anechoic chamber measurements, it has been found that
the insertion loss of the measured RIS is around 2.84 dB,
and that RIS satisfies the EM response reciprocity. It has been
found that the performance of RIS under the coplane condition
is better than that under the non-coplane condition. In outdoor
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Fig. 22. Spatial CCFs of the channel measurements under different
RIS sizes and coding methods.
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Fig. 23. Channel capacities of indoor channel measurements in non-
mirror reflection scenarios.

channel measurements, CDFs of six LSPs in BS-RIS sub-
channel and RIS-UE sub-channel on different heights have
been compared, and the phenomenon have been explained.
Moreover, the correlation function of BS-RIS sub-channel
decreases more slowly than that of RIS-UE sub-channel. In
indoor channel measurements, it has been found that the
coding modes and RIS sizes can change the channel properties.
Compared with the metal plate, the RIS with the same size can
effectively improve the power of the target signal and increase
the channel capacity for the non-mirror reflection scenarios. It
has been found that measuring the differences of power or code
could be a good method of estimating the Rayleigh distance
of RIS.
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metal plate, while in the bottom one to an average value. It is necessary to either change the 

color/shape of the curve or specify that the curve at the bottom also refers to the metal plate (?). 

 

Response: In the revised manuscript, we have changed the color of the curve “Mean value” 

from purple to green in Fig. 9(b) (Fig. 8(b) in the original manuscript).  

 

5. Check all the English, page 11 of 13 subsection 4) : double "In in" 

 

Response: In the revised manuscript, we have further improved the English writing to avoid 

any typos. 

 

 

 

Reviewer 2 

 

In this work, the authors present channel measurements and analysis for RIS-assisted MIMO 

systems. The topic is timely and interesting, and the motivation and novelty is well discussed. 

There are no major flaws in the paper and the reviewer has the following comments to improve 

the manuscript: 

 

1. The abstract needs to be optimized a bit to highlight well also the motivation of this work. 

 

Response: In the revised manuscript, we have further improved the quality of the abstract and 

highlighted the motivation of this work as follows: 

 

“However, there exists little research on RIS small-scale fading channel measurements, which 

are important for the characterization of RIS channels and communication system design.” 

 

2. In the first paragraph, there is an excessive usage of the word RIS. Please consider rewriting 

for example as:  

a) Owing to the advantages of RIS, such as easy-----> Owing to the advantages such as easy.... 

b) RIS has been regarded as a promising key...-----> it has been regarded as a promising key 

 

Response: In the revised manuscript, we have rewritten the first paragraph on Page 1 as 

suggested. The revised sentence is as follows: 

 

“Owing to the advantages such as easy to deploy, energy-efficient, and low-cost, it has been 

regarded as a promising key technology for the sixth generation (6G) wireless communications 

[5]-[7].” 
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3. Page 3, column 1: Your line "When conducting the segmented channel measurements for 

RIS-UE sub-channel, Tx is set at RIS side and Rx is set at UE side" is not clear. When the RIS 

is treated as TX, does it need to have RF chains for signal transmission? 

 

Response: Note that RIS is regarded as a kind of passive device in this paper. So, there are no 

RF chains for RIS. The objective of segmented channel measurements is obtaining the channel 

characteristics for the BS-RIS/RIS-UE sub-channels. The signal path in the original channel is 

BS-RIS-UE. When conducting BS-RIS sub-channel measurements, RIS is replaced by the Rx 

(with RF chains) and BS is replaced by the Tx (with RF chains). When conducting RIS-UE 

sub-channel measurements, RIS is replaced by the Tx (with RF chains) and UE is replaced by 

the Rx (with RF chains). The Tx/Rx here means the channel measurement equipment which 

can transmit/receive wireless signals. To make it clear, we have changed the explanation in the 

second paragraph on Page 2 in the revised manuscript as the following: 

 

“It should be noticed that the words “Tx” and “the receiver (Rx)” here mean the channel 

measurement equipment which can transmit/receive wireless signals with radio frequency (RF) 

chains. When conducting the segmented channel measurements for the BS-RIS sub-channel, the 

Tx is placed at the BS position and the Rx is placed at the position of RIS to measure the channel 

between the BS and RIS. When conducting the segmented channel measurements for the RIS-

UE sub-channel, the Tx is set at the position of RIS and the Rx is set at the position of UE to 

measure the channel between the RIS and UE.” 

 

4. Your bullets claiming the novelty of this work must also mention the used SAGE algorithm 

and why do you do the data processing as a motivation. Otherwise, the reader reads all the 

bullets only regarding the main novelty of this work and then in the paper organization finds 

"Section III presents the measurement data processing methods employing the the high-

resolution Space Alternating Generalized Expectation Maximization (SAGE) algorithm." 

which has not been mentioned anywhere before. 

 

Response: In the revised manuscript, we have added the SAGE based data processing as one 

novelty of this work as suggested. 

 

5. In the same line " data processing methods employing the the high-resolution Space 

Alternating Generalized Expectation " ---> remove one "the" 

 

Response: In the revised manuscript, we have revised as suggested. 

 

6. Same page, column 2: "There are two different coding modes, the far-field coding mode and 

the nearfield coding mode." Please consider elaborating on this by providing a few details 

(Maybe only in the Introduction section, so that it is clear to the readers what you mean) 

 

Response: In the revised manuscript, we have elaborated the coding methods in the introduction 

as suggested (see the first paragraph at the right column on Page 2): 
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“Far-field and near-field coding methods are designed for the experiments. Far-field coding 

only considers the phase differences caused by the projection differences of the incident wave 

on the array. Near-field coding considers the phase differences among RIS elements caused by 

the differences of the distance from each RIS element to Rx. The detailed calculation methods 

will be given later in Section II.” 

 

7. Page 4, Col. 1, line 35: "The discrete phase is the most close phase to the continuous one 

among the four phases corresponding four codes." This is not clear. Please consider rewriting 

it, maybe be mentioned in terms of quantization error. 

 

Response: In the revised manuscript, we have added TABLE II on Page 3 to illustrate the 

relationship between continuous phases and the codes.  

 

8. Page 8, Col. 1, line 49:  What’s more, the difference between the power of the main lobe 

and that of side.... "What’s more" does not sound right in a scientific paper. Please consider 

rewriting the line. 

 

Response: In the revised manuscript, we have changed the word “What’s more” into a more 

scientific word “Furthermore” on Page 7. 
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