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Abstract—To provide customized high-quality services for
all users in the sixth-generation (6G) wireless communication
systems, it is fundamental to study all 6G channel scenarios
and establish accurate channel models for these scenarios corre-
spondingly. However, the absence of comprehensive 6G scenario
categorization and the difficulties of modeling the channels for all
scenarios bring huge challenges. In this article, we aim to give a
thorough overview of channel scenarios, identification algorithms,
and intelligent channel modeling theories. First, different stan-
dardized scenario categorization principles are reviewed. A uni-
fied and exclusive scenario categorization method is elaborated
with detailed 6G scenario definitions. Second, scenario features,
feature selection principles, ML-based identification algorithms,
as well as data preprocessing methods are surveyed for the benefit
of accurate scenario identification. Third, the intelligent scenario
adaptive channel modeling theory based on 6GPCM is specified.
Statistical properties for industrial IoT and HST scenarios are
simulated and compared with those from measurements. Finally,
future research directions and challenges are addressed.
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of Things (IoT), scenario categorization, scenario identification,
sixth-generation (6G).
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I. INTRODUCTION

W IRELESS communication systems have now evolved
into the sixth-generation (6G) [1], [2], [3], thereby

bringing unprecedented changes in the way of life and in
the present social and economic landscape. Motivated by the
ever-increasing demands for high-data rate, low latency, and
high mobility, the 6G communication system will be an intel-
ligent Internet of Everything (IoE) that aims to include all
frequency bands and communication scenarios [4], [5], [6].
As stated in [7], the 6G system envisions global coverage,
all spectral [8], and full applications. Considering the over-
whelming geographical diversities and channel propagation
characteristics in 6G communication scenarios, a comprehen-
sive understanding of the wireless propagation environments
is fundamental to extract and refine environmental features,
then to construct accurate channel models and establish reli-
able communication network. Therefore, it is crucial to give
a thorough clear categorization of existing 6G communica-
tion scenarios. In addition, assisted by the introduction of
high-efficiency intelligent technologies, the intelligent scenario
identification should be investigated to ensure a quick access
to the matching of channel statistical model parameters and
acquire the specialized channel model. Then, the wireless com-
munication systems can be designed and optimized based on
the acquired channel model [9]. In particular, with regard to the
global coverage feature, 6G is expected to expand terrestrial
communications to space-air-ground-sea integrated communi-
cations [10]. However, the expansion of 6G wireless commu-
nication scenarios in terms of breadth and depth poses higher
requirements on system design and technical specifications.

To provide customized high-quality services for different
6G space-air-ground-sea wireless communication scenarios,
new key technologies and network architectures should be
employed in the future wireless communication systems.
Especially, the emergence of Internet of Things (IoT) [11] sce-
narios and intelligent applications will bring significant uncer-
tainty. It is expected that adaptive technologies and automati-
cally adapted intelligent networks can be established to provide
dynamic, flexible, and dedicated services to all accessed
equipment, such as adaptive modulation and coding [12].
Correspondingly, wireless communication system design,
deployment, and management need to be more intelligent and
universal [13], [14], [15].
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One of the most important parts of 6G communication
system is the wireless channels. Between the transmitter (Tx)
and the receiver (Rx), many uncertainties will exist due to
different system setups and propagation environments. As a
basis for system design, evaluation, and optimization, wireless
channel modeling plays an important role [6]. Traditionally, a
channel model can be established through channel measure-
ment, multipath component (MPC) parameter estimation [16],
and statistical analysis. However, the complexity of this pro-
cess will be too high for 6G. First, 6G communication
scenarios are manifold and more complex, especially with
the usage of new technologies, such as millimeter wave
(mmWave), terahertz (THz), (ultra-)massive multiple-input
multiple-output (MIMO) [17], reconfigurable intelligent sur-
face (RIS) [18], etc. Hence, it is impossible to cover all
communication scenarios at all frequency bands with vari-
ous system configurations. Even for a given scenario, with
the expanded bandwidth, increased antenna element number,
and rising speed of the terminal, the channel measurement data
for storage and processing are huge. Second, high-resolution
MPC parameter estimation is usually time-consuming. This is
more challenging when dealing with large volume of mea-
surement data. Especially in high-mobility communication
scenarios, e.g., high-speed train (HST) [19] and vehicle-to-
vehicle (V2V) [20], [21], the channel can change dramatically
with very fast traveling speed. In such cases, denser channel
measurements should be conducted and faster data processing
should be performed to provide real-time information. Third,
new channel characteristics emerge in various 6G scenarios.
For example, HST channel scenarios show distinct temporal
nonstationarity. How to efficiently extract channel statistical
properties for specific 6G scenarios is another task that needs
to be tackled. Finally, channel models that incorporating chan-
nel properties of various 6G scenarios need to be formulated.
However, this may bring overwhelming complexity to channel
models. Therefore, the tradeoff among accuracy, complexity,
and pervasiveness is usually hard to obtain. For example, deter-
ministic channel model, such as ray tracing (RT), very much
rely on the reconstruction of the real environment, which can
be highly complex [22].

One way to solve the above mentioned problems is to
let the 6G system automatically identify the relevant com-
munication scenario and adaptively matching channel model
parameters to that scenario. This vision of 6G adaptive chan-
nel modeling procedure is explained in Fig. 1. Specifically,
based on a comprehensive and exclusive categorization of
6G scenarios, a certain communication scenario is first iden-
tified and then model parameters for an adaptive channel
model are matched. In terms of scenario extension and cat-
egorization, standardization groups, including the 3GPP TR
38.901 [23], WINNER I/II/+ [24], [25], [26], METIS [27],
MiWEBA [28], QuaDRiGa [29], COST 2100 [30], [31], [32],
[33], and IMT2020 [34], have proposed different categoriza-
tions. However, it will be shown later that their involved
scenarios are very limited and their categorization criteria
are ambiguous. They are not adequate for the engineers
to select suitable standard channel models for various 6G
scenarios. In the scenario identification step, as a perfect

candidate to identify various 6G scenarios, machine learn-
ing (ML) has attracted much attention and can be expected
to automatically identify wireless communication scenarios,
process real-time measurement data/feedback signals, track
cluster variances, and extract model parameters [35]. It has
been widely applied in solving many wireless communication
problems [36]. These include scenario identification, chan-
nel modeling, channel estimation, positioning/localization, and
network management [37]. In addition to processing large
amount of data sets with reduced human effort, ML can
provide reliable real-time decisions with flexible adaptability.
Finally, the tradeoff among accuracy, complexity, and perva-
siveness/universarity of the deterministic RT, geometry-based
stochastic channel models (GBSMs) [38], beam domain chan-
nel models (BDCMs) [39], [40], [41], and correlation-based
stochastic channel models (CBSMs) [42], [43], [44], [45]
should be considered. It is worth studying various channel
modeling methodologies and choosing suitable candidates for
the pervasive channel model.

There has been no work in the literature that provides a com-
plete study on scenario extension, identification, and adaptive
channel modeling. Hence, this work investigates a series of
communication scenarios definitions and classifications deliv-
ered by standardized channel models, such as the 3GPP TR
38.901 [23] and WINNER I/II [24], [25], and proposes a novel
scenario classification framework for 6G communications.
Then, we overview the commonly used feature extraction
approaches of existing ML-based communication scenario
identification methods. Furthermore, the conventional nonpre-
dictive model and ML-based predictive model are summarized.
Finally, the framework of 6G adaptive channel modeling is
introduced. The future research directions and challenges are
also discussed. The main contributions and novelties of this
work are as follows.

1) Scenario categorization methods of various standardiza-
tion groups are compared and the 6G global coverage
scenarios are introduced. A comprehensive and exclusive
categorization method is proposed with detailed scenario
definitions.

2) Features used for scenario identification and feature
selection principles are presented. Identification meth-
ods for the Line-of-Sight (LoS)/non-LoS (NLoS) and
multiple scenarios are analyzed. Besides, proper ML
algorithms for various 6G scenario identification are
analyzed.

3) The channel model parameter matching for different 6G
scenarios is first illustrated using a newly proposed 6G
pervasive channel model (6GPCM). The model accuracy
in particular scenarios are validated by comparing the
statistical properties of channel model simulations with
those of channel measurements.

The remainder of this article is organized as follows. In
Section II, standard scenario categorization methods are intro-
duced and a novel scenario categorization method is proposed.
In Section III, feature selection and scenario identification
methods are presented. In Section IV, various channel models
and the adaptive channel modeling methodology are intro-
duced. In Section V, the model parameters and simulated
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Fig. 1. Simplified wireless channel modeling procedure.

statistical properties for Industrial IoT (IIoT) and HST sce-
narios are illustrated. Future directions and challenges are
summarized in Section VI. Finally, conclusions are drawn in
Section VII.

II. WIRELESS COMMUNICATION SCENARIO

CATEGORIZATION

Previously, in the third-generation (3G) to the fifth-
generation (5G), there were several research works that
focused on different sets of wireless communication scenarios
and their classification based on different criteria. However, in
the 6G global coverage system, scenarios exhibit increased
diversity and complexity compared to those in 3G–5G. In
this section, we elaborate on typical 3G–5G standard cat-
egorization methods and propose an extended categoriza-
tion framework that incorporates most 6G global coverage
scenarios.

A. Standard Scenario Categorizations and Definitions

Before 6G, wireless communications mainly focused on
terrestrial scenarios. There were some standardization groups
that had a light touch on different scenarios of interest. The
involved scenarios and categorization criteria used by these
standardization groups are listed in Table I. Specifically, we
summarize the shortcomings of these categorization methods
in a manner that is later suitable for 6G scenario categorization.

1) The 3GPP TR 38.901 standard channel model intended
to accurately characterize wireless channels from 0.5
to 100 GHz. It is applicable to both link-level and
system-level simulations. Considering multiple physical
scenario types, the supported scenarios include indoor
office, shopping mall, indoor factory, stadium, and gym.
Both outdoor-to-outdoor (O2O) and outdoor-to-indoor
(O2I) link topologies were included for urban micro-
cell (UMi) and urban macrocell (UMa) cell types. There
were also backhaul, device-to-device (D2D), and V2V
access link types. It can be seen that these categorization

criteria are quite ambiguous and the involved scenarios
are limited.

2) In the WINNER I document, four physical scenario
types, including in building, hotspot, metropol, and rural,
were defined. Further classified by the cell type and
link topology, there were small office/residence and
indoor-to-outdoor (I2O) for in building scenarios; typical
UMa, bad UMi, indoor, O2I, and four stationary feed-
ers for hotspot scenarios; suburban macrocell (SMa),
UMa, bad urban, O2I, and LoS feeder for metropolitan
scenarios; and rural macrocell (RMa) and LoS moving
networks for rural scenarios. Note that only indoor,
UMa, UMi, stationary feeder, SMa, and RMa scenarios
were covered in the WINNER I channel model. Here, it
can be seen that the categorization criteria cannot pro-
vide exclusive categorization of different scenarios. The
categorization of indoor and outdoor scenarios is not
complete.

3) Evolved from the WINNER I document, the WINNER II
document was delivered for both link-level and system-
level simulations. A total of 18 scenarios were listed
in this document. The newly covered scenarios in the
WINNER II channel model were I2O, bad UMi, O2I,
and rural moving networks. It supported multiantenna
technologies, multiuser (MU), multicell, and polariza-
tion networks. It can be used for any wireless systems
operating at 2–6 GHz. Similar to the scenario catego-
rization in WINNER I, the categorization criteria are
not exclusive or complete.

4) In WINNER +, in addition to channel measure-
ments conducted for the validation of the WINNER
II channel model, mainly four measurement cam-
paigns were carried out for channel modeling in ultra-
high frequency (UHF) and distributed antenna systems
(DASs), e.g., O2I at 522 MHz, UMa at 770–790 MHz,
and campus at 3.55 GHz. The main purpose of this doc-
ument was to support the update of the WINNER II
channel model. There are also some differences from the
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TABLE I
SCENARIOS OF INTEREST IN EXISTING STANDARD DOCUMENTS

scenario definition in WINNER II. Note that this model
is generalized from 2-D to 3-D by considering elevation
angles, and can be used for over-the-air (OTA) testing.

5) The METIS document defined a number of basic
propagation environments, link types, and link
topologies following the propagation mechanisms.
The mentioned propagation environments were dense
urban, urban, rural, indoor (office and shopping mall),
highway, open air festival, and stadium. The link types
of interest included base station (BS)-user equipment
(EU), BS-BS, and D2D, and the link topologies
included O2O, O2I, and indoor-to-indoor (I2I). The
total number of involved scenarios is 11. However, the
criterion to classify the propagation environment is not
clear and the involved scenarios are quite limited.

6) In MiWEBA, according to the link type, there were three
main categories of scenarios, including access in open
area, street canyon, and hotel lobby; fronthaul/backhaul

in the above rooftop and street canyon; and D2D also in
open area, street canyon, and hotel lobby. The number of
involved scenarios is 8. The involved scenarios are quite
limited and there is a lack of transition of scenarios, such
as I2O and O2I.

7) In mmMAGIC, following the signal transmission
mechanisms, scenarios were classified as direct
transmission and indirection transmission (scattering,
ground reflection, and blockage). Then, 10 scenarios
were mentioned by further dividing each scenario into
indoor and outdoor cases. Nevertheless, the mentioned
indoor, outdoor, and transition between indoor and
outdoor scenarios are quite limited. UMa was not taken
into consideration since a frequency spectrum above
6 GHz is expected to be initially used for small cell BS.

8) In COST2100, channel measurement activities were
carried out for different scenarios, including dis-
tributed cooperative systems, polarimetric channels,
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vehicular channels under high mobility, ultrawide-
band (UWB) channels, as well as mmWave and sub-
mmWave systems. Here, the distributed cooperative
systems included multiple nodes with a single BS and
multiple user channels. There were indoor MU MIMO,
outdoor MU, O2I MU MIMO, O2I, and I2I distributed
nodes, outdoor relay channels, and outdoor peer-to-peer
channels. The communication scenarios considered in
COST2100 are also limited.

In general, existing standardized wireless communication
scenario categorizations are either not complete or not clear
enough. They are unable to provide useful reference for 6G
system engineers to choose the dedicated channel models for
various 6G scenarios.

B. 6G-Oriented Scenario Extension

1) 6G-Oriented Scenario Categorization Criterion: The
proposed 6G-oriented global coverage scenario categorization
framework is illustrated in Fig. 2. The criterion behind the
proposed categorization scheme is from far to near and from
global to specific. We aim to establish a comprehensive, subtle,
and exclusive scenario categorization framework. By mapping
geometrical and other physical parameters for each dedicated
scenario, we expect this framework to serve as an important
reference for further scenario identification.

Based on the three basic principles of exclusivity, integrity,
and standardization, 6G communication scenarios are clas-
sified into space-air-ground-sea, we first classify wireless
communication scenarios into 5 main categories, i.e., space,
aerial, terrestrial, maritime, and transformation scenarios. In
the following, we will briefly discuss each category.

2) Space Communication Scenario Categorization: The
space communication scenario becomes important in pro-
viding seamless coverage for wireless communications [46].
According to the orbital altitude, space communications can
be further divided into high, middle, and low Earth orbit
(LEO) satellites, with the heights above 35 786 km, between
2000–35 786 km, and below 2000 km, respectively. They can
be used for indoor and outdoor communications. A typical
communication scenario in this category is the international
space station, which operates at an altitude of 379 km. Due
to the long propagation link distance of satellite scenario and
the influence of meteorological conditions, such as ionosphere
and cloud, rain and fog [47], it has broad coverage capa-
bility and super bandwidth connection. So the exclusivity of
this kind of scenario is ensured by the height of the scenario
and the characteristics of the channels. The hierarchical order
and functional differentiation of low orbit, medium orbit, high
orbit, and space station ensure the integrity of the classification
of communication scenario.

3) Aerial Communication Scenario Categorization: Aerial
communications using aircraft, unmanned aerial vehicle
(UAV), balloon, missile, etc., can provide long-haul signal
transmission without extremely high costs. They can not only
be used for wireless communications between aerial equip-
ments but also be used to exchange information with terrestrial
or space receivers/centers. In particular, UAV plays a more

important role in providing light-weight, flexible, and full-
view real-time communication and tracking. In this category,
the typical communication scenarios are drones and aircraft
communications. Considering that the aviation channel link is
short, it is mainly affected by atmospheric attenuation and
other factors. The channel differences caused by different
flight altitudes of aircraft are large. The high maneuver-
ability and arbitrary trajectory of UAVs may cause channel
time-domain nonstationary characteristics. The applications in
mmWave and terahertz frequency bands bring spatial-temporal
sparsity. The channel model has high-delay resolution under
high-bandwidth conditions. Relying on the flight altitude and
speed, the classification of the aerial communication scenario
is exclusive. Based on the near-Earth distribution character-
istics of different high-layer scatterers in the air-to-ground
channel of UAV, it can ensure the integrity of the sce-
nario classification. According to the correlation of large/small
scale parameters between different layer modeling multi-
links, it further guarantees the standardization of scenario
classification.

4) Terrestrial Communication Scenario Categorization:
Terrestrial communications still account for the majority of
6G wireless communications. It can be divided into indoor
and outdoor scenarios.

For indoor scenarios, there are residence, office, education
area, industry, commerce, and agriculture. The residence sce-
nario can be further divided into multi/highrise residential,
single-family house/villa, country courtyard, cave dwelling,
Hakka Earth building, water building, yurt, recreational vehi-
cle, sample room, isolation room, and resort. The typical office
scenarios include open centralized office area, isolated cen-
tralized office area, small independent office, meeting room,
logistics service room, emergency command center, secret
room, and archives. The education area can also be further
divided into students apartment, teaching building, library,
canteen, stepped auditorium, stadium, laboratory, computer
room, and convenience service store. The industry scenar-
ios include warehouse, medium/large manufacturing plant,
assembly plant, medium/large production line factory, power
station, water treatment plant, and steel/petroleum smelter. The
typical commerce scenarios are shopping mall, hotel, restau-
rant, cinema, culture and sports museum, cabaret, Internet
cafe, bookstore, swimming pool, chess room, indoor arena,
indoor attractions, airport, high-speed rail station, subway sta-
tion, hospital, and bank. There are also agricultural scenarios,
including field, farm, and indoor farmers market.

The outdoor scenarios are more complex. We divide them
into typical urban, suburban, terrestrial transportation, in vehi-
cle, remote area, and underground. First, in typical urban
scenarios, there are open area, hotspot area, street canyon, and
roof. For the open area scenarios, we further divide them into
square, park, velodrome, scenic spot, ski resort, outdoor courts,
airfield, golf course, and beach. Hotspot area scenarios include
festival square, station square, outdoor stadium, gas/charging,
outdoor parking, highway service area, and fairgrounds. Street
canyons include main streets in suburb/country, rural-urban
continuum, city, and outskirts, as well as city branch.
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Fig. 2. 6G-oriented scenario categorization framework.

Suburbs can be further classified into town and village. In
towns, there are transportation hub, nonstaple food base, logis-
tics storage center, reservoir, nursing home, waste treatment

plant, slaughterhouse, and prison. In villages, there are farm
land, pond, fruit garden, nursery, country road, and wilder-
ness. Terrestrial transportation mainly includes highway, street,
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crossroads, viaduct, underground parking lot, and tunnel, as
well as open space, viaduct, cutting, tunnel, and station. In
vehicle scenarios can be classified as carriage, cabin, cockpit,
and medical shelters. Obstructed areas and open areas are the
two main forms of remote areas. The underground scenarios
include industry, transportation, and others. There are mine and
well drilling in industry, tunnel, subway, underground parking
lot, and dugout in business. Additionally, there are other sce-
narios, including cave, underground river, missile silo, and
underground data center.

Specific examples include residential, office, industrial, and
commercial, etc. Among them, the typical multihigh-rise res-
idential is designed according to the urban family model with
rich functions and diversified structures, and shows regularity
according to the regional layout. The structure of a single-
family house or villa is significantly different, and the floor
length/width/height is significantly different from that of an
ordinary house. Offices in the urban core have a single func-
tion and structure, but a relatively random layout. Considering
the production process, indoor lighting, and complex architec-
ture used to facilitate the passage of a variety of lifting and
transportation equipment, industrial buildings generally use
multispan structures with large length and width. Commercial
buildings can be divided into shopping malls, supermarkets,
hotels, office buildings, and exhibition halls according to the
function. The basestation is generally located outdoor, and
the communication scenario needs to consider the moving
process from outdoor to indoor scenario. The indoor sce-
nario environment is usually closed and the signal can be
reflected repeatedly. The outdoor environment is relatively
open, the coverage area is wide, the propagation loss is large,
and various scatters in the environment can bring obvious
multipath effects. The exclusivity of the terrestrial classifi-
cation is ensured by the average height of the building, the
average floor spacing, the height fluctuation of the building,
the regional LOS proportion, and the indoor proportion. The
structure is divided into indoor and outdoor, and the integrity
of the scenario classification is achieved by further refinement
combined with functions. Based on the logical framework of
3GPP TR 38.901, it is extended to ensure the standardization
of scenario classification.

In Table II, we have listed some definitions of typical ter-
restrial transportation scenarios as examples. Through param-
eterized scenarios, we will be able to find the most distinct
features that can be used for further scenario identification.
For example, the most distinct differences between Internet of
Vehicles and HST network are the height and moving speed.
There are also obvious variances of moving speed for detailed
scenarios in Internet of Vehicles. The width and height can be
associated to categorize detailed scenarios in HST network.

5) Maritime Communication Scenario Categorization:
Maritime communication is a key part of accomplishing full
coverage communication. It not only refers to the sea sur-
face, coast, and island but also includes underwater acoustic
communication scenarios, such as epipelagic area, twilight
area, deep scattering layer, and hadal zone. The sea sur-
face communication scenarios include ship, super ship, marine

navigation aids, amphibious vehicle, drilling platform, and ice-
berg; the coast scenarios include shore, harbor, pier, beach,
and protective dam; and the island scenarios include vol-
canic, coral, alluvial, mainland, and ocean islands. Above the
sea surface, there are ports and shoreline on the sea. The
layout of the port is similar to the residence and industry.
The shoreline structure is usually narrow and long. There are
certain differences between two scenarios in terms of structure.
The underwater acoustic channels can be divided into shallow
sea area (≤100 m) communication scenario and deep sea area
(≥100 m) communication scenario according to the depth of
the water area [48]. Due to changes in the physical proper-
ties of sea water, such as depth, salinity, and temperature, the
propagation properties of sound waves in ocean communica-
tion are different in different depths. In contrast, the quality
of underwater acoustic channels in deep waters is better. In
shallow waters, sound waves can be reflected and scattered by
the seabed and sea surface during propagation, resulting in a
strong multipath effect at the receiver. In addition, compared
with the ultrahigh propagation speed of electromagnetic waves
in ground communication, the transmission speed of under-
water acoustic waves is 1500 m/s, resulting in a very large
Doppler effect at the receiver. The classification of maritime
scenarios from different physical depth layers and transmis-
sion speeds can ensure the exclusivity of this type of scenario.
The classification from above and below the water surface
and the water bank can guarantee the integrity of scenario
classification.

6) Transitions Between Communication Scenarios: The
transitions between communication scenarios are also included
in the proposed framework. For example, I2I, I2O, O2O, O2I,
and other interscenario transformation. Due to space limita-
tions in this article, we will not elaborate on them.

To sum up, existing standardized scenario classification
methods are incomplete or fuzzy, the classification logic is not
clear, and the corresponding granularity is rough. Moreover, it
lacks multiscenario classification for 6G full coverage scenar-
ios and scenario transformation. The proposed classification
framework gives the physical definition, new planning, and
scenario expansion for 6G full coverage scenarios according
to environmental difference and channel characteristics. Under
the guidance of comprehensive coverage architecture, the
classification is carried out abiding by three criteria of exclu-
sivity, integrity, and standardization. It provides an important
basis for the research of 6G wireless communication scenario
classification and the development of channel modeling.

III. IDENTIFICATION OF WIRELESS COMMUNICATION

SCENARIOS

The identification of wireless communication scenarios is
helpful for engineers to efficiently customize wireless com-
munication systems and to provide high-quality services in
some special communication scenarios, such as V2V and HST.
In this section, scenario related features and scenario identi-
fication algorithms, especially ML-based algorithms, will be
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TABLE II
DEFINITIONS OF TYPICAL TERRESTRIAL TRANSPORTATION SCENARIOS

TABLE III
SELECTED FEATURES FOR SCENARIO IDENTIFICATION

studied. Relevant features and data-processing will be first dis-
cussed, followed by conventional manual methods. Then, new
ML-based automatic methods will be examined.

A. Features and Data Preprocessing

1) Scenario-Related Features: Based on communication
scenario identification, we can select several relevant features,
as listed in Table III.

a) Channel impulse response (CIR)/Channel transfer func-
tion (CTF): One feature that contains rich information is
the CIR h(t) in the time domain or the CTF H(f ) in the
frequency domain. However, the large data size induced
by channel measurement snapshots and taps may hinder
the timely decision, which is an issue in time-varying
environments.

b) Distribution Shapes: The probability density function
(PDF), peak number of the delay power spectral den-
sity (delay PSD), skewness, and kurtosis/peakedness are
characteristics of the distribution shapes to distinguish
different scenarios. Here, PDF indicates the probabil-
ity distribution of the wireless channels. Usually, a LoS
scenario follows the Rice distribution, while a NLoS sce-
nario follows the Rayleigh distribution. Therefore, it can
be used to distinguish LoS and NLoS scenarios. The

peak number of the delay PSD can be used to identify a
rich scattering environment. Delay PSD peaks with dif-
ferent delays represent MPCs from different scatterers.
Other parameters are defined as below.
Skewness indicates to what extent the probability distri-
bution is asymmetric. It can be calculated as

ε = E[|h(t)| − u]3

σ 3
(1)

where u and σ are the expectation and standard deviation
of h(t), respectively. The skewness of a LoS scenario is
usually smaller than that of a NLoS scenario [55].
Kurtosis/peakedness shows the strident of a peak. It can
be calculated as

κ = E[|h(t)| − u]4

σ 4
. (2)

It is often compared with the normal distribution, which
corresponds to the case κ = 3. The kurtosis in the LoS
case is larger than that in the NLoS case.

c) Power Domain Threshold Comparison: Path loss (PL)
is an important indicator of large-scale fading. It is
influenced by the transmission distance d as

Lp = PL(d0)− 10γ log10

(
d

d0

)
(3)
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where PL(d0) is the PL at the reference distance d0
and γ is the PL exponent in a certain scenario. PL
can be used to distinguish communication scenarios with
significantly different traveling distances.
Received signal strength (RSS) is the total received
signal power in decibel (dB), which can be calculated as

RSS = 10log10P (4)

where P is the total receive signal power.
Rician K-factor is the ratio between LoS power and
NLoS power in Watts as

K = PLoS

PNLoS
(5)

where PLoS is the LoS power and PNLoS is the NLoS
power. Therefore, the Rician K-factor can be used to
reflect the channel condition, namely, whether it is a
LoS case or a NLoS case.

d) Time Domain Threshold Comparison: Channel gain is
an important indicator of power distribution at different
time instants. A large channel gain means that there are
strong MPCs that have contributed to the Rx or means
a LoS case. A small channel gain may be caused by
weak MPCs or purely by noise. The channel gain can
be calculated as the square of CIR.
The temporal autocorrelation function (ACF) measures
how fast the channel characteristics change with time.
For a time variant scenario with high mobility, the ACF
can decrease very fast and the stationary duration can
be very small.
The root mean squared (RMS) delay spread (DS) reflects
the dispersion degree of the wireless channels in the
time delay domain. For scenarios with rich scatterers,
the RMS DS is usually very large.

e) Spatial Domain Threshold Comparison: The angular
PSD can also be used for scenario identification. It
can be obtained by the conventional Bartlett beam-
former or calculated based on the extracted MPC angular
parameters.
The spatial cross-correlation function (CCF) measures
how fast the channel characteristics change at different
antenna elements. For a (ultra-)massive MIMO scenario
with very large antenna array, the CCF can decrease
rapidly with the expansion of antenna distance and the
stationary interval can be observed.
RMS angular spread (AS) reflects the dispersion degree
of the channels in the angular domain. Here, the
interested angle can be Azimuth Angle of Arrival
(AAoA), Elevation AoA (EAoA), Azimuth Angle of
Departure (AAoD), and Elevation AoD (EAoD).

f) Frequency Domain Threshold Comparison: The Fourier
transform of the temporal ACF gives the Doppler PSD
to show the power distribution over different frequency
points. The frequency correlation function (FCF) shows
how the channel characteristics change at different
frequency points. For wireless channels with large band-
width, this phenomenon can be significant. The Doppler
effect is caused by the relative motion of Tx and Rx.

The RMS doppler spread (DPS) reflects the dispersion
degree of the channels in the frequency domain. For the
static scenario, there is no Doppler effect; thus, its RMS
DPS tends to 0.

2) Feature Selection: Efficient scenario identification relies
on the features used. For different scenarios and algorithms,
features that play crucial roles may be different. In [15], it was
reported that the selected features for scenario identification
should be informative, discriminating, and independent.

Features can be calculated and used to make decisions by
comparing them with typical values/thresholds, as they assume
different values in different scenarios. In [64], this method was
developed for key parameter threshold-based identification.
However, this method does not work well for time-varying
environment, where channel properties change with time.

Multifeature fusion is also efficient for scenario recognition.
Rafatnia et al. [12] proposed a multifeature fusion-based sce-
nario recognition method for HST channels. The CIRs of some
scenarios, such as rural, station, suburban, and multilink sce-
narios, were measured. They used the Rician K-factor, RMS
DS, RMS AS, and RMS DPS. The relevance of scenarios was
analyzed to show that the suburban and multilink scenarios
had stronger relevance.

3) Data Preprocessing: To cope with a large volume of
data and to improve identification efficiency, data preprocess-
ing can be performed to remove redundant information. Too
much redundant information will be a barrier to accurate sce-
nario identification, but too little information may also lead to
incorrect scenario identification. Therefore, appropriate pre-
processing is meaningful for scenario identification. It mainly
includes normalization and dimension reduction.

Normalization limits the processed data within a certain
range, e.g., [0,1], thus improving classification or regression
performance. The most commonly used method is z-score
normalization, which unifies the processed data following the
standard normal distribution. Also, batch normalization makes
the input vectors of each layer follow the same distribution.
Therefore, the vanishing gradient can be avoided and the
convergence rate can be improved.

Dimension reduction can be used to reduce computational
complexity. Principal component analysis (PCA) is widely
used. Singular value decomposition (SVD) can transform
correlated data into linearly uncorrelated values. The kernel
method is used to handle especially complex distributed data
sets [15]. The radial basis function (RBF) kernel is a typical
example.

A band-pass filter can also be used to denoise the data by
setting the absolute cutoff frequency slightly larger than the
signal frequency. It has been verified that band-pass filter can
filter as much white Gaussian noise as possible.

B. Conventional Manual Identification Method

The intuitive way to identify LoS/NLoS and other scenarios
is by human inspection/manual identification. Conclusions can
be drawn by observing the most distinct characteristics through
synthesized analysis. For example, the LoS scenario can be
easily identified if there is a dominant peak in delay PSD
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with the corresponding delay equals to the time duration of
the signal from the Tx to Rx linearly. However, it is usually
not reliable when no distinct characteristic is available.

In 6G (ultra-)massive MIMO communication scenarios,
the increase in antenna number brings massive augmentation
of data. In time-varying V2V and HST scenarios, wireless
channels also show very different propagation characteristics
in short time periods. The complexity of data in spatial,
temporal, and spectral domains is phenomenal, making manual
identification impractical.

C. ML-Based Intelligent Scenario Identification

1) ML Algorithms: ML algorithms can be categorized as
supervised learning, unsupervised learning, and reinforcement
learning (RL) [65], [66]. Their applications in the scenario
identification are summarized in the following.

a) Unsupervised Algorithms: This kind of algorithm does
not require labels for data sets. The k-means is a typical
clustering algorithm without prelabeling. Based on the
randomly selected numbers as cluster centers, it itera-
tively divides data samples into a number of groups by
minimizing the intracluster distance. Gaussian mixture
model (GMM) can also be used to characterize features
using several Gaussian distributed models.

b) Supervised Algorithms: They decide the relative param-
eters of the classifier using the training data sets. Then,
this model is used for the classification of unlabeled
data sets. The k-nearest neighbor (k-NN) classifies sce-
narios by assigning a data sample to the most common
class. There is also the weighted k-NN algorithm to
alleviate the sensitivity of the k-NN algorithm. Support
vector machine (SVM) is a supervised ML algorithm
that works well for classification and regression. It can
provide accurate classification by finding the largest
gaps of samples in an optimal high-dimensional hyper-
plane. It behaves well even with noisy and nonnormally
distributed data. Random forest consists of multiple
decision trees and makes final decisions based on the
voting of all decision trees.

c) RL: RL is a representative one of the paradigms and
methodologies of ML, which is used to describe and
solve the problem of maximizing or achieving spe-
cific goals through learning strategies in the interaction
between agent and environment. RL can solve the
problems that cannot be solved by supervised learn-
ing methods in communication scenarios. The com-
monly used RL algorithm is the model-based algorithm,
which optimizes and classifies communication networks
by modeling the specialized environment. Since such
algorithms are highly efficient in the training process,
such intelligent methods have received more and more
attention by communication communities recently.

2) ML-Based Scenario Identification: In Table IV, several
existing works on LoS/NLoS and multiple scenario identifica-
tion using different ML algorithms are given. Their selected
features are also listed.

Most works have focused on LoS and NLoS identification,
as they can benefit practical applications, such as local-
ization [80]. With an unsupervised algorithm, the k-means
algorithm was used to identify LoS and NLoS scenarios for
UAV to BS scenarios in [58]. Many works used supervised
algorithms for LoS and NLoS identification. The frequently
used algorithms are SVM, random forest, artificial neural
network (ANN), CNN, LSTM. In addition, semi-supervised
learning, such as safe semi-supervised SVM, was widely
proposed to realize NLOS identification for indoor smartphone
position and navigation based on the features extracted from
the channels [71].

The SVM algorithm was used for the identification of
LoS and NLoS scenarios for the UAV-to-ground scenario
in [59]. Then, a 3-D city map with building position and
height was reconstructed. In [53], NLoS identification for the
UWB channel was performed using both SVM and a math-
ematical convolution method. The features employed were
CIR and different subsets of eight metrics, e.g., RSS, max-
imal amplitude, rise time, standard deviation, mean excess
delay, RMS DS, kurtosis, and skewness. Different CIR data
points were also used during comparison. It was concluded
that the increased number of CIR data points or features may
not lead to accuracy improvement. In addition, it was shown
that the convolution-based method can provide comparable
identification performance with fewer CIR data samples.

Using the CNN, classification of LoS and NLoS UWB prop-
agation conditions was performed in [52]. The selected feature
was downsampled delay PSD rather than CIR of indoor envi-
ronment measurement data. It was shown that the proposed
method has reduced computational cost while maintaining a
similar performance. It was also pointed out that additional
features, such as range and energy, can be included, but with
an increase in training time. In [49], both SVM and CNN
were used for LoS and NLoS scenario identification. With
S-V model simulation data, it was pointed out that SVM
performed less satisfactorily. It is worth mentioning that short-
time Fourier transformation was applied to the CIR, and then
the CTF images were used as the input of the CNN. Therefore,
the LoS and NLoS identification task was transformed to an
image recognition problem.

With the LSTM network, channel state information (CSI)
along with RSS, RMS DS, kurtosis, and skewness were used
as input features to identify LoS and NLoS conditions in [56].
Based on channel measurements in a meeting room, the results
showed that a larger bandwidth and more features, especially
the latter term, can benefit the identification accuracy.

There are also works on indoor and outdoor identification,
and multiple typical scenario identification. Supervised algo-
rithms are usually used, including SVM, back-propagation
neural network (BPNN), CNN, etc. In [50], based on real-
time measurement data, the CTF and FCF were compared
for four different environments. ML algorithms, including
decision trees, SVM, and k-NN, were used to classify four
scenarios. It was shown that the k-NN method with CTF and
FCF as features performed the best. It was indicated that
this method can be applied to real-time deployment scenarios.
In [9], the BPNN was used to identify four V2V scenarios,
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TABLE IV
SUMMARY OF EXISTING SCENARIO IDENTIFICATION WORKS USING ML

i.e., urban areas, highways, tunnels, and LoS blocked by vehi-
cles (NLoSv). The input features were delay PSD, RMS DS,
shadow fading (SF), and Rician K-factor. It was shown that

the proposed BPNN was able to provide over 98% accuracy
in identifying four scenarios. In [74], a CNN was used to dis-
tinguish indoor and outdoor scenarios at different frequency
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bands. The input features were MPC parameters, such as
amplitude, time delay, and Doppler frequency. The results
showed the astonishing performance of a CNN in dealing with
MPC parameters. In [76], scenario classification of the HST
GSM-R system was studied based on geographic information
systems (GISs). The model tuning and deterministic analysis
were proposed to distinguish the special propagation scenarios.
In [57], an RNN combined with LSTM was used for indoor
office NLoS condition identification with commodity wireless
local area network (WLAN) devices. The input vector con-
sisted of the RSS using the real and imaginary parts of the CSI.
The early stopping scheme was used to avoid overfitting and
the simple hypothesis test was used to make the final decision.
It was also found that the phase information may not be suit-
able for identification in a time-varying environment. In [77],
the fuzzy C-means clustering algorithm was used to classify
four typical industrial scenarios by using a total of 16 features.
In [15], unsupervised and supervised ML algorithms were used
to identify both measured HST viaduct and cutting, and sim-
ulated QuaDRiGa RMa and UMa scenarios. It was indicated
that the unsupervised GMM and supervised k-NN and SVM
can provide significant accuracy over 90%, while the k-means
can only yield accuracy of approximately 80%. In [60], binary
hypothesis testing was used for NLoS identification based on
expressway and urban intersection scenarios. Several features,
including skewness, kurtosis, RMS DS, peak-to-average ratio,
and Rician K-factor, were considered to measure their influ-
ences on identification accuracy. It was found that the Rician
K-factor performed less satisfactorily and that the RMS DS
was significantly impacted by the environment.

3) Power Consumption: ML power consumption has an
important influence on improving efficiency and optimizing
the deployment of ML algorithms. It is affected by system
hardware and software, which mainly considers floating point
operation (FLOPs) as a quite important measurement index
for unsupervised and supervised algorithms. Different config-
uration tactics for the same number of parameters will result
in different FLOPs. While for high-precision or more com-
plex algorithms, such as deep learning, FLOPs will go up
a lot when the exponential growth in the number of system
parameters and the size of data sets [78]. However, from the
perspective of the classification application system, model sim-
plification techniques are currently used to reduce the ML
power consumption, and the overall ML performance gain
should be weighed against the power configuration of the
entire communication system.

4) Explainability: Currently in the field of communica-
tion scenario classification, there is an unexplainable black
box problem in ML, which means that users can only see
the classification results, without understanding the reasons
and processes of their decisions. It is difficult to distinguish
the clear logic with closed-form expressions behind artificial
intelligence, so the ML explainability has become an urgent
problem to be studied and solved necessarily [79]. Toward
ML-based intelligent scenario identification like CNN and RL,
the mainstream approach to explainability is to analyze CIR
through Saliency map (importance map), or to construct a set

of simple and effective convolution filters for measuring fea-
tures changes during training process, which can be used to
explain the learning mechanism of and visualize qualitative
analysis of important features.

In summary, it can be seen that the selected features
can have significant impacts on identification performance.
For multiple scenario identification, supervised learning algo-
rithms exhibit better accuracy, and features with abundant
information, e.g., CTF and MPC parameters, can yield
better performance. However, existing works on scenario
identification mainly focus on LoS and NLoS identification,
as well as indoor and outdoor classification. There is still lack
of the identification of multiple scenarios. In addition, most
works focused on single-input–single-output (SISO) channels
at sub-6-GHz frequency band, and only a few papers have
discussed MIMO channels. Thus, there is a lack of scenario
identification at higher frequency band with large array for 6G.

D. Digital Map/Picture-Based Scenario Identification

In addition to the aforementioned scenario identification
using on-site channel measurements, digital map/picture is
another important method that can be used for efficient
scenario identification. It contains abundant physical and geo-
graphic information that is sufficient to provide macroscopic
identification of scenarios. For example, typical urban scenar-
ios, including open area, hotspot, street canyon, and roof, can
be easily distinguished, as they exhibit different numbers of
buildings, streets, etc.

The 2-D digital map/picture can be acquired through satel-
lite/camera, reconstruction using some software. In the future,
with the development of imaging and emulation technologies,
3-D environmental information, e.g., used in virtual real-
ity, which contains more refined environment restoration, is
expected to provide better scenario identification performance.
Compared with wireless channel measurement, which requires
expensive equipment and exhaustive labor, this is a less expen-
sive and more convenient method. In addition, benefiting from
the powerful image processing capability of ML algorithms,
real-time scenario identification can be performed in a timely
and accurate manner.

Furthermore, based on accurate scenario identification, fun-
damental channel propagation characteristics can also be
predicted using ML algorithms, even with randomly placed
Tx and Rx under different frequency bands. In [81], 3-D
electronic maps, including locations of Tx and Rx, distance,
building density, average height, etc., were associated with
real channel measurements to predict the PL of a typical
hotspot area. The operated center frequencies were 700 MHz,
2.4 GHz, and 3.5 GHz. It was shown that this method can pro-
vide accurate prediction of PL even without a large amount of
measurement data. It is worth noting that channel characteris-
tics should not only include large-scale parameters, such as PL
and shadowing but also include small-scale parameters. Thus,
in real wireless communication, optimum system design can
be performed/switched in a timely manner for a superior user
experience. However, this line of work has not yet received
much attention. There are also ML algorithms researches on
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the identification of other special scenarios. For example, ML
algorithms were used in [82], such as ANN, SVM, kNN,
and RF, to classify land use land cover based on remote
sensing image data provided by satellites. The ensemble ML
approach combined with multisource geographical image data
set to improve the classification accuracy of arid regions was
proposed in [83]. Hyper spectral image about studying ML-
based crop identification with temporal data information for
crop phenology planning was adopted in [84]. The automating
road junction ML-based identification using crowdsourcing on
GPS transformed digital map data were adopted in [85].

Considering that the 6G wireless communication scenar-
ios are usually complex and the scenario changes all the
time, identifying the scenario type and formulating the cor-
responding parameter optimization strategy is quite difficult
and critical for wireless network optimization. The conven-
tional identification scheme relying on subjective experiences
and manual decision rules has gradually exposed the disad-
vantages of low scalability, which is difficult to ensure the
identification quality. The artificial intelligence algorithms can
improve the scenario identification accuracy, and thus increase
the efficiency of wireless network optimization and position-
ing. In addition, it can predict the channels using the multiple
linear regression algorithm and provide an important reference
for the adaptive optimization of subsequent communication
schemes. However, how to reduce model complexity, training
time, computing storage spaces and communication overhead
between devices while ensuring accuracy still needs to be
studied.

IV. 6G CHANNEL MODELING METHODOLOGIES

A. Conventional Nonpredictive Wireless Channel Modeling

Conventional nonpredictive channel models mainly include
deterministic and stochastic models [86]. Deterministic chan-
nel models use real channel measurements and RT. However,
they are site-specific and usually have high complexity to carry
out channel measurements or reconstruct the real channels.

Stochastic models use CBSM, GBSM, and BDCM. CBSM
relies on independent and identically distributed (i.i.d.) Gaussian
assumption. The channel coefficient is fully determined by the
spatial covariance matrix. With different approximations to this
matrix, one has the Kronecker-based stochastic channel model
(KBSM) and Weichselberger model. They have very low com-
plexity, but their accuracy is not satisfactory, especially the
KBSM, which assumes a rich scattering environment. GBSM
describes wireless channels based on the geometrical relation-
ships among Tx, scatterers, and Rx. The MPC delay, AoD, AoA,
amplitude, etc., can be derived with the aid of some empirical
distributions. GBSM has very high accuracy and flexibility,
but the computational complexity is also very high. BDCM,
originally known as virtual channel representation (VCR), is a
promising method that can provide a better tradeoff between
accuracy and complexity. It characterizes the channel propaga-
tion between virtual beam pairs and can provide a performance
between CBSM and GBSM. This is an emerging method for
future 6G wireless channel modeling.

B. ML-Based Wireless Channel Modeling

The utilization of ML algorithms in wireless chan-
nel modeling is twofold: 1) channel characterization and
2) prediction [87]. On the one hand, to reduce the complex-
ity of conventional channel modeling methods, researchers
resort to ML algorithms to extract channel statistical parame-
ters and to explore underlying properties. On the other hand,
the many possible 6G scenarios pose high demands for channel
prediction. Existing channel measurement data is expected to
predict the channel statistical properties of wireless channels
in the future for new scenarios, and at new frequency bands.
In [88], ML-assisted channel modeling and channel estimation
were introduced. There are already works on the ML-based
channel characterization. They are summarized in Table V.

Many works have been performed for wireless chan-
nel modeling at sub-6 GHz and mmWave frequency bands.
In [89], a generative adversarial networks-long short term
memory (GAN-LSTM) framework was proposed to predict
sub-6-GHz channel statistics, including RMS DS and RMS
AS. In [93], CNN was used to predict the PL exponent of
outdoor mmWave band channels. The impacts of building den-
sity and average distance from the Tx were analyzed using RT
simulation data. In [90] and [91], a hybrid physics-based and
data-driven modeling framework was proposed to show very
high accuracy and great generalization ability. Based on real
measurement and RT simulation data, the through-vegetation
cluster parameters, including vegetation attenuation, RMS DS,
and RMS AS, were predicted using an ANN. Instead of
estimating channel model parameters through high-resolution
MPC parameter estimation and clustering, summarized statis-
tics that hold enough information were learned by using a
ML algorithm based on approximate Bayesian computation
and a DNN with two hidden layers in [94]. The summarized
statistics include reflection gain, number of scatterers, proba-
bility of visibility, polarization ratio, and noise variance. The
performance of the proposed methods was validated based on
simulation data and real measurement data from an indoor
NLoS environment at 60 GHz. In [64], with extensive train-
ing data collected from real channel measurements and GBSM
simulations, channel statistical properties, such as received
power, RMS DS, and RMS AS, could be exported using the
feed-forward neural network (FNN) and RBF-NN. This result
indicated that ML will play an important role in future channel
modeling. In [100], RF and KNN were used for the prediction
of PL and RMS DS. A feature selection scheme was also
proposed to further improve the prediction accuracy. In [96],
the PL and RMS DS were predicted for 60-GHz mmWave
channels in corridor and hall. The ML methods used included
back propagation (BP), SVM, and genetic algorithm (GA). It
was shown that the combination of SVM with GA can pro-
vide excellent fitness with the measurement data. In [106], PL
fading in an underground former gold mine at 60 GHz was
estimated using MLP and RBF.

There are also works on channel modeling for other sce-
narios, including satellite, V2V, UAV, massive MIMO, etc.
In [54], to handle the very large amount of time-varying
V2V channel measurement data, ML techniques were used
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TABLE V
ML-BASED WIRELESS CHANNEL CHARACTERIZATION/PREDICTION

for LoS/NLoS identification, MPC tracking, and cluster-
ing [110]. This provides essential information for further
channel modeling. In [108], an ANN was used to estimate
the channel excess attenuation of a Q-band satellite channel.
In [92], multiple linear regression was proposed to predict
the PL model of a different operating environment using the
measurement data of a certain scenario. In [111], a cluster
kernel-based channel model was proposed to take advantage
of both stochastic and deterministic channel models. In [97], to
improve the accuracy of deterministic and stochastic models,
the PL was predicted for vehicular visible light communi-
cation (VVLC), and a CTF model was proposed using ML
algorithms. The vehicle mobility and environmental effect-
related parameters were considered as inputs, such as distance,

ambient light, Rx inclination angle, and optical turbulence.
MLP-NN, RBF-NN, and decision tree-based RF algorithms
were employed and compared for real measurement data to
demonstrate the high accuracy of PL prediction. In [102], the
RBF-NN was used to build the PL and shadowing model, and
the ANN was used to build the time-varying joint small-scale
channel parameters. In [112], big data enabled cluster-based
channel modeling methods were summarized, including clus-
tering techniques, cluster tracking algorithms, and different
cluster-based channel models. In [97], the channel modeling
of the VVLC was proposed to improve the model accuracy
for pass loss, and build the channel frequency response model
through consideration of vehicle mobility and environmental
effects. In [113], ML-based multilayer perceptron model was
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trained with statistics computed from channel realizations, to
calibrate the model parameters as a regression problem involv-
ing mapping of the CTF or impulse response. In [114], a
combination of the Exponential and the Generalized Gamma
Distribution was proposed to model the underwater channel
environment with great accuracy, and built a convolutional
neural network capable of estimating the parameters from
received signal.

For channel prediction, in [109], a real-time PL prediction
method was proposed based on the MLP for dedicated short-
range communications (DSRCs). A higher prediction accuracy
was achieved in comparison to the statistical method. In [98],
a nonparameterized data-driven approach RF was used for
the PL prediction of V2V communication. The contributions
of different features were also discussed to achieve accurate
performance. In [101], both unsupervised and supervised ML
techniques were leveraged for massive MIMO-OFDM high-
mobility wireless channel prediction. Through 3GPP NLoS
scenario simulation, the proposed spatio-temporal autoregres-
sive (ST-AR) and complex-valued NN (CVNN)-based chan-
nel prediction methods showed enhanced channel prediction
performance. In [99], the prediction of end-to-end loss (includ-
ing SF) was formulated as a supervised regression problem.
The authors used ensemble bagged trees (EBTs) and exponen-
tial Gaussian process regression (GPR) methods to process
raw data and processed data, respectively, to show accurate
performance. In [95], the RBF-NN was used to investigate the
receive power, PL, and SF of a 60-GHz mmWave channel. It
showed that the RBF-NN outperformed the BP network.

It can be seen that, NNs are widely used for wireless channel
modeling. The most interesting statistical properties are PL,
SF, RMS DS, and RMS AS. In channel prediction works,
most output features are PL. There is still lack the prediction of
more channel statistical information. In both channel modeling
and prediction, the involved scenarios are very limited.

C. Pervasive Channel Modeling

Although the above mentioned conventional nonpredictive
and ML-based predictive channel models have different mer-
its in terms of accuracy and complexity, there is still a
lack of unified channel modeling framework that is perva-
sive for all frequency bands and all scenarios. It is desirable
to analyze system performance with different technologies,
frequency bands, array sizes [115], etc., under the same chan-
nel modeling framework. The pervasive channel model should
be beneficial to figure out the relationships among model
parameters, propagation characteristics, as well as system
performance. It is especially important for the 6G channel
model standardizations and the investigation of fundamental
theories and technologies of 6G networks. In addition, with the
adjusted model parameters, the pervasive channel model can
be degenerated to the simplified channel models for specific
scenarios.

As shown in Fig. 3, a pervasive channel modeling theory
can be established with a unified modeling methodology, a
unified CIR, and integrated statistical properties of 6G chan-
nels for all spectra and all scenarios. One intuitive option is to

utilize the pervasiveness of the GBSM and to fit most channel
characteristics of various scenarios into the GBSM. In [116],
the 6GPCM was proposed based on the GBSM. It combined
most channel characteristics into a unified framework and
derived a unified CIR for all frequency bands and all scenarios.
The impacts of frequency bands, scenarios, mobile velocities,
and antenna array sizes were analyzed based on the 6GPCM.
Another option is to use the GBSM as the main framework.
Since RT has high accuracy and can provide MPC parame-
ters in very complicated environments, while ML can predict
channel characteristics in future time, new frequency band,
and unknown environments, they can be used as supportive
methods for the main framework, where GBSM is the core,
to provide extra credits of the pervasive channel model.

The pervasive model uses a unified cluster-based geometric
stochastic channel modeling method, a unified CIR expression,
and a comprehensive consideration of the statistical character-
istics of 6G all-band all-scenario channels. It can be simplified
to a target channel model for a specific frequency band and
a specific scenario by adjusting the parameters of the channel
model. Through the analysis of 6G universal channel model,
the complex mapping relationship between channel model
parameters, channel statistical characteristics and communica-
tion system performance, frequency bands and scenarios, can
be studied. As a unified channel model framework, it is cru-
cial to promote 6G channel model standardization, 6G generic
theory, and system fusion construction.

V. 6G SCENARIO ADAPTIVE CHANNEL MODELING

The 6G scenario adaptive channel modeling can be
achieved through intelligent scenario identification and auto-
matic channel model parameter matching, as shown in
Fig. 4. After identifying the targeted communication scenario,
the relative channel model parameters should be automati-
cally matched and the dedicated channel model should be
abstracted.

In this section, we will use the 6GPCM as an example to serve
as the core of 6G scenario adaptive channel modeling [116].
Detailed procedures and all the 6GPCM related parameters
are summarized in Fig. 4, including the user defined and wire-
less channel parameters. As for the user defined parameters,
system setup, array configuration, and static/mobility related
parameters need to be determined in advance. The large scale
fadings (LSFs), cluster related parameters, and MPC related
parameters should be matched to the targeted scenario. Under
the simplified 6GPCM framework, dedicated CIR/CTF for a
certain scenario can then be derived.

In the following, we will show how to use of 6GPCM,
model parameter matching, and its abbreviations for several
typical space-air-ground-sea communication scenarios.

A. Complex Channel Matrix

The complex channel matrix of the 6GPCM is given as

H = [PL · SH · BL · WE · AL]1/2 · Hs (6)

where PL, SH, BL, WE, and AL denote the LSFs, i.e., path
loss, shadowing, blockage loss, weather effect loss, and
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Fig. 3. Pervasive channel modeling theory [116].

Fig. 4. Detailed procedures and parameter matching of scenario adaptive channel modeling.

atmospheric gas absorption loss, respectively. The small-scale
fading (SSF) is represented by Hs = [hqp,fc(t, τ )]MR×MT ,
where p = 1, . . . ,MT and q = 1, . . . ,MR, MT and MR

are Tx and Rx antenna element numbers, respectively. The
CIR hqp,fc(t, τ ) is derived as the sum of LoS and NLoS

components, as illustrated in (7)–(9), shown at the bottom of
p. 7302. Here, K(t) is the Rician factor at time instant t. There
are antenna patterns, Faraday rotation, and amplitude, delay,
AAoA, AAoD, EAoA, and EAoD for each MPC of clusters.
More detailed symbol interpretations and derivations of the
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TABLE VI
DEFINITIONS OF SIGNIFICANT PARAMETERS

LoS and NLoS components can be found in [116]. All param-
eters are time variant and change with the cluster birth-death
in the spatial, temporal, and frequency domains, hqp,fc(t, τ ),
the CIR between AT

p and AR
q at the carrier frequency fc, is

derived as the sum of LoS and NLoS components, as illus-
trated in (7). Here, K(t) is the Rician factor at time instant t,
and the calculation of hLoS

qp,fc
(t, τ ) and hNLoS

qp,fc
(t, τ ) can be repre-

sented as (8) and (9), respectively, Fp(q),fc,V(·) and Fp(q),fc,V(·)
are the antenna patterns of Tx (Rx) antenna for vertical and
horizontal polarizations at corresponding carrier frequency fc,
respectively, κmn(t) is the cross polarization power ratio, μ
is co-polar imbalance, θVH

mn
, θHV

mn
, and θHH

mn
are initial phases

modeled as random variables uniformly distributed over (0,
2π ]. Besides, Fr represents Faraday rotation referring to the
rotation of the polarization plane caused by the propagation of
electromagnetic waves through the ionosphere in LEO satel-
lite scenario, and 	mn = 108/f 2

c is the Faraday rotation angle,
where fc is in GHz. Otherwise, in scenarios without con-
sidering the influence of ionosphere, we can set 	mn = 0.
Additionally, Pqp,mn,fc(t) and τqp,mn,fc(t) is the power and delay
of the mth ray in the nth cluster between AT

p and AR
q at time

instant t. Also, θVV
L and θHH

L denote random phase in (0,
2π ], τL

qp(t) is the time delay of LoS path at time instant t,
and given the speed of light c, τL

qp(t) can be calculate as
τL

qp(t) = ‖�AR
q (t) − �AT

p (t)‖/c = Dqp(t)/c, where ‖·‖ calculates
the Frobenius norm. Just to be clear, Table VI summarizes the
definitions of significant parameters.

B. Parameterization and Modeling of 6G Communication
Scenarios

In [116, Table IV], the configurations and model parame-
ters of the 6GPCM at different frequency bands and scenarios

were listed, including center frequency, antenna number, SF,
RMS DS, RMS AS, etc. However, only indoor scenarios in the
THz band, UAV-to-ground scenario, and ultramassive MIMO
scenario were discussed. More dedicated parameter settings
for all scenarios will be added in the future.

In this work, we emphasize the parameters that may be
sensitive to wireless communication scenarios and system set-
tings. Taking the space satellite, UAV, terrestrial V2V and
HST, and maritime communication scenarios as examples,
we list the most distinct channel characteristics, parameters
and modeling methods, and key parameter adjustments in
Table VII. Only the single-link and single-frequency case is
considered.

In satellite channels, the ionosphere effect and rain attenua-
tion should be considered. We characterize them by introduc-
ing the Faraday rotation matrix Fr, which represents the rota-
tion of the polarization plane caused by electromagnetic wave
propagation through the ionosphere, and the rain attenuation
factor RA. The space scenario can be characterized by defining
in the 6GPCM AL = BL = 1, the co-polar imbalance μ = 1,
the time-invariant MPC number in the nth cluster Mn(t) = Mn,
the cluster survival probability at integral multiples of
frequency and space intervals Psurv(
f ) = Psurv(
r) = 1,
the frequency dependent factor γmn = 0 because of
the limited bandwidth, and the 2-D spatial lognormal
process ξn(p, q) = 1, which simulates the smooth
power variation at the pth transmit and qth receive
antennas.

The aerial scenario must include the 3-D movement prop-
erty. This can be done by introducing elevation angles for
the Tx, Rx, and scatterers. The LSPs should be related to
the UAV height. The simplified parameters for this specific
channel are AL = BL = WE = 1, μ = 1, Mn(t) = Mn,
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TABLE VII
SIMPLIFIED MODELS OF THE 6GPCM AND PARAMETER ADJUSTMENTS

Psurv(
f ) = 1, γmn = 0, ξn(p, q) = 1, and the Faraday rotation
angle ψm,n = 0 in the 6GPCM for this scenario.

In terrestrial scenarios, we take the IIoT and ultra-HST
(UHST) scenarios as examples. First, for the IIoT chan-
nel, dense multipath is the key channel characteristic. We
can address this characteristic by analyzing the model dense
MPCs. Other parameters that can be fixed and the suggested
values are: WE = 1, μ = 1, ψm,n = 0, Mn(t) = Mn,
Psurv(
f ) = 1, and γmn = 0. In Fig. 5, we give an example of
6GPCM to fit the RMS DS of IIoT channel measurement data
in [122]. Two cases with different antenna heights are com-
pared. In cases 1 and 2, we set the height of antenna arrays

to 0.84 and 1.6 m, respectively. Here, most of the surrounding
objects are higher than the Tx and Rx antenna arrays in case 1,
while the objects are generally lower than the antenna arrays
in case 2. As shown in Fig. 5, the larger the height of the
antenna arrays, the larger the RMS DS will be. The simula-
tion result is consistent with the measurement data, since there
are less multipath components that are blocked by surrounding
objects to reach the Rx side in case 2.

Then, for the (U)HST channel, there is a very large Doppler
shift. Distinct time domain nonstationarity brings cluster birth-
death in the time domain and time-variant channel parameters.
In addition, clusters are distributed on the inner wall of the

hqp,fc(t, τ ) =
√

K(t)

K(t)+ 1
hLoS

qp,fc(t, τ )+
√

1

K(t)+ 1
hNLoS

qp,fc (t, τ ). (7)

hLoS
qp,fc(t, τ ) =

⎡
⎣ Fq,fc,V

(
φR

E,L(t), φ
R
A,L(t)

)
Fq,fc,H

(
φR

E,L(t), φ
R
A,L(t)

)
⎤
⎦

T[
ejθVV

L 0
0 ejθHH

L

]
Fr

⎡
⎣ Fp,fc,V

(
φT

E,L(t), φ
T
A,L(t)

)
Fp,fc,H

(
φT

E,L(t), φ
T
A,L(t)

)
⎤
⎦ · ej2π fcτL

qp(t)δ
(
τ − τL

qp(t)
)

(8)

hNLoS
qp,fc (t, τ ) =

Nqp(t)∑
n=1

Mn(t)∑
m=1

⎡
⎣ Fq,fc,V

(
φR

E,mn
(t), φR

A,mn
(t)

)
Fq,fc,H

(
φR

E,mn
(t), φR

A,mn
(t)

)
⎤
⎦

T⎡
⎣ ejθVV

mn

√
μκ−1

mn (t)e
jθVH

mn√
κ−1

mn (t)e
jθHV

mn
√
μejθHH

mn

⎤
⎦Fr

⎡
⎣ Fp,fc,V

(
φT

E,mn
(t), φT

A,mn
(t)

)
Fp,fc,H

(
φT

E,mn
(t), φT

A,mn
(t)

)
⎤
⎦√

Pqp,mn,fc(t) · ej2π fcτqp,mn (t) · δ(τ − τqp,mn(t)
)
. (9)

Authorized licensed use limited to: Southeast University. Downloaded on February 26,2024 at 05:23:58 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: CHANNEL SCENARIO EXTENSIONS, IDENTIFICATIONS, AND ADAPTIVE MODELING 7303

Fig. 5. CDFs of RMS DSs in IIoT scenarios with different antenna heights
(fc = 28 GHz, MR = MT = 1, vR = vT = 0 m/s, N(t0) = 15).

vacuum tube, and the waveguide effect must be characterized
by setting the number of clusters between the pth and qth
antenna in different positions. In this scenario, the channel has:
WE = 1, μ = 1, ψm,n = 0, Mn(t) = Mn, vAn = vZn = vT = 0,
Psurv(
f ) = Psurv(
r) = 1, γmn = 0, and ξn(p, q) = 1.
In Figs. 6 and 7, the level crossing rate (LCR) and average
fading duration (AFD) are simulated using the 6GPCM. The
fitted two groups of viaduct channel measurement data with
different height and also different scatterer heights are referred
from [123]. Among them, the biggest difference between
viaduct I and viaduct II scenarios is the difference of Rician
factor K, i.e., the proportion of LoS component, caused by the
height difference of the Tx relative to the surrounding scatter-
ers (trees). From the simulated and measurement results shown
in Figs. 6 and 7, we can see that the LCR at the envelope level
of 5 dB below the median value in viaduct II is a little more
than twice of the value in viaduct I, while the AFD varies
slightly.

In the maritime scenario, the channel is location dependent.
So that the LoS and NLoS MPCs in the rough sea surface and
over the sea surface evaporation waveguide will appear and
disappear in the channel. The fluctuation of sea waves can
be characterized by the Pierson-Moskowitz spectrum. Other
simplified parameters are AL = BL = WE = 1, μ = 1, ψm,n =
0, Mn(t) = Mn, Psurv(
f ) = 1, γmn = 0, and ξn(p, q) = 1.

VI. FUTURE RESEARCH DIRECTIONS AND CHALLENGES

A. Effective Feature Selection for Various 6G Scenario
Identification

In addition to global coverage, 6G will be an integrated
intelligent network that covers all spectra and full applications.
The exploited frequency resource will move from conventional
sub-6 GHz to mmWave, THz, and optical wireless. Other
applications, such as (ultra-)massive MIMO, RIS, and IIoT,
should also be included. Therefore, scenario identification is
a challenging task for 6G. How can we fully consider and
make better use of the relative characteristics to improve the
accuracy of scenario identification? The features commonly
used are CIR, CSI, delay PSD, kurtosis, skewness, Rician
K-factor, RMS DS/AS, etc. To handle more complex scenario

Fig. 6. LCRs in HST viaduct scenarios (fc = 930.2 MHz, K = 5.514 in
viaduct I, K = 1.54 in viaduct II, vZn ∼ U(0, 5) m/s).

Fig. 7. AFDs in HST viaduct scenarios (fc = 930.2 MHz, K = 5.514 in
viaduct I, K = 1.54 in viaduct II, vZn ∼ U(0, 5) m/s).

identification tasks, more general and effective features should
be proposed. It should not only use the pure environmental
features but also use features that are representative of different
frequency bands and applications. For example, the improved
PL and coherent bandwidth should be considered, as PL is usu-
ally larger at higher frequency bands and there exists frequency
nonstationarity for a larger bandwidth. The stationary interval
of (ultra-)massive MIMO, scatterer height and density, etc.,
should also be considered.

B. Efficient ML Algorithm for Grandiose Data and
Propagation Channel Digital Map Processing

With the rapid development and deployment of 6G and the
optimization of network performance, ML and digital map are
gradually received more attention in communication scenar-
ios. Digital map extends from simple architectural map to
new intelligent maps containing complex information [124].
First, digital map evolves from static to dynamic because
the mobility with intelligent terminals. Second, the digital
map contains not only the conventional building environment
information but also the intelligent terminal information or
network information, as well as the frequency band and band-
width used in each scenario. Generally, the new digital map

Authorized licensed use limited to: Southeast University. Downloaded on February 26,2024 at 05:23:58 UTC from IEEE Xplore.  Restrictions apply. 



7304 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

has large data volume, high complexity, and high-processing
cost. The improvement of digital map model structure, data
dimension, and dynamic response will bring massive com-
munication data to be processed. In this case, conventional
data processing methods are no longer suitable for the new
intelligent digital map processing. Thus, new ML methods
is adopted to further extract and analyze the features of
intelligent digital map for identifying channel classification
information. In addition, it is difficult to uniformly analyze and
process the physical environment features in different com-
munication scenarios without standardization of digital map.
Therefore, it is necessary to establish a unified framework and
standards for digital map.

C. 6G Pervasive Channel Model and RT for Adaptive
Channel Modeling

6GPCM also needs to be further studied and expanded in
the specific segmentation scenarios of space-air-ground-sea,
and more scenario measurement data is needed for verify-
ing and refining. First of all, in terms of the full frequency
band, how to solve the problem of spectrum resource con-
gestion, research, such as short-wave, infrared and ultraviolet
spectrum characteristics and comprehensive utilization is a
future challenge. Second, how to build an integrated network
of space-air-ground-sea in the full coverage scenario chan-
nels, and study global deep coverage and channel modeling,
including underwater communication and underground com-
munication, is another challenge. Third, how to study orbital
angular momentum communication and other channel char-
acteristics analysis, scenario classification and identification,
scenario parameter adaptive matching, etc. is also a key chal-
lenge in the future in terms of all-application scenario channels
and the key communication technologies spawned.

It is an important direction for RT simulation to help build-
ing high-precision channel information database, and provide
effective data supports for adaptive wireless channel modeling.
However, for mobile communication scenarios, such as vehi-
cle networking and drones in 6G scenarios, RT simulation will
meet huge computational complexity and processing problems,
and how to effectively model channel properties to hold better
high accuracy when solving complexity problems is a certain
challenge.

The complexity of RT calculation depends on the complex-
ity of the scenario and the maximum number of reflections
allowed by the propagation mechanism. It determines the num-
ber of intersections between rays and surfaces, which is also
the most time-consuming part of RT calculation. Currently,
preprocessing algorithms can usually be used to reduce the
number of faces and optimize the number of rays emitted,
to reduce the number of intersections. With the development
of computer hardware resources, optimization can also be
achieved through high-performance GPU parallel accelera-
tion. Considering the computational complexity of large-scale
complex scenarios, such as the Industrial IoT or mobile scenar-
ios, high-performance computing resources may be required,
and the simulation can be deployed on servers with GPU
acceleration [125], [126].

VII. CONCLUSION

In this work, a comprehensive framework that inte-
grates scenario extension, identification, and adaptive channel
modeling has been proposed for 6G. By comparing sce-
nario categorization in existing standardization documents,
it has been shown that the scenario categorization needs to
be extended to cover most 6G scenarios. Furthermore, the
scenario identification technique has been comprehensively
investigated. The scenario features, ML-based algorithms, and
data preprocessing methods have been carefully analyzed and
compared. The novel scenario adaptive channel modeling has
been proposed, in which the model parameter matching for
particular 6G scenarios has been illustrated. Based on the
6GPCM, statistical properties, such as IIoT and HST scenar-
ios, have been simulated. The RMS DSs, LCRs, and AFDs
of the channel model simulations have shown great agreement
with those of the channel measurement data. It has also been
indicated that the proposed scenario categorization method can
serve as an important prerequisite for the accurate identifica-
tion of 6G communications scenarios and adaptive modeling
of 6G wireless channels. Finally, future research directions and
challenges have been given.
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