张嘉男

发布者:沈如达发布时间:2022-03-07浏览次数:7524

职称:教授,博导,国家级高层次青年人才,yl23455永利官网青年首席教授

办公室:yl23455永利官网九龙湖校区信息大楼508

个人主页:https://seu.teacher.360eol.com/teacherBasic/preview?teacherType=&teacherId=10724   

Emailjiananzhang@seu.edu.cn

学习经历:

2015– 2020加拿大卡尔顿大学,电子与计算机工程,博士

2013– 2020天津大学,电磁场与微波技术,博士

2009– 2013天津大学,电子信息工程,学士

工作经历:

20201– 202112卡尔顿大学,电子系,助理研究员(合作导师:Q. J. Zhang教授,加拿大工程院院士、加拿大工程研究院院士,IEEE Fellow

20221 – 202312yl23455永利官网,yl23455永利官网、毫米波全国重点实验室,副研究员

20241 – 至今yl23455永利官网,青年首席教授

个人简介:

张嘉男,yl23455永利官网青年首席教授,博士生导师,国家青年高层次人才(海外),华为“紫金学者”、“江苏科技智库优秀青年人才计划”入选者。长期从事智能电磁计算、电磁超表面逆向设计等方向的研究,主持国家自然科学基金优秀青年基金(海外)、国家自然科学基金青年基金、江苏省自然科学基金青年基金、南京市留学人员科技创新择优资助项目、雷达探测感知全国重点实验室开放课题、中电科创新理论技术群基金、华为横向合作等项目,同时参与国家重点研发计划、JWKJW重点项目等多个国家级重点项目。在IEEE TAPIEEE TMTTIEEEE MWTL等国际著名期刊上发表学术论文50余篇,谷歌学术总引用1000余次。授权/受理射频EDA技术相关国家发明专利8项、美国专利1项。受邀参加国际国内会议作邀请报告十余次,长期担任IEEE TMTTIEEE AWPL, IEEE TCAS-IIEEE MWTL等国际著名期刊审稿人。

研究方向:

ü    智能电磁计算:数据驱动机器学习、物理驱动机器学习,基于人工智能的快速计算电磁学算法,雷达目标特性智能建模与设计优化

ü    电磁超表面设计:超表面电磁特性的正向预测与逆向设计,频率选择表面快速设计优化

ü    微波器件建模与优化:微波器件智能建模、快速成品率分析与优化设计

ü    量子计算:电磁量子算法设计、量子有限元仿真、量子机器学习

获奖情况:

2023:国家级高层次青年人才

2023:中央高校优秀青年团队

2023:yl23455永利官网“科学研究先进个人”

2022:yl23455永利官网“紫金青年学者”

2022:江苏科技智库“优秀青年人才”

论文著作

代表性学术论文:(*代表通讯作者

[1]       J. N. Zhang, F. Feng, Q. J. Zhang, “Quantum computing method for solving   electromagnetic problems based on the finite element method”, IEEE Trans.   Microw. Theory Techn., vol. 72, no. 2, pp. 948-965, Feb. 2024.

[2]       J. L. Su, J. W. You*, L. Chen, X. Y. Yu, Q.   C. Yin, G. H. Yuan, S. Q. Huang, Q. Ma, J. N. Zhang*, and T. J.   Cui*, “MetaPhyNet: Intelligent design of large-scale metasurfaces based on physics-driven   neural network,” J.   Phys. Photonics, vol. 6, no. 3, pp. 1-9, May 2024.

[3]       J. W. Zhang, et al., “Low-cost   surrogate modeling for expedited data acquisition of reconfigurable metasurfaces,”   Adv. Mater. Technol. 2024, 2400850.

[4]       J. W. Zhang, Z. Zhang*, J. N. Zhang*,   J. W. Wu, J. Y. Dai, Q. Cheng, Q. S. Cheng, and T. J. Cui, “A novel two-stage   optimization framework for designing active metasurfaces based on multi-port   microwave network theory,” IEEE Trans. Antennas Propag., vol. 72, no. 2, pp.   1603-1616, Feb. 2024.

[5]       Z Fang, Q. Zhou, J. Y. Dai, Z. J. Qi, J.   N. Zhang*, Q. Cheng, and T. J. Cui*, DOA   estimation method based on space-time coding antenna with orthogonal codes,IEEE Trans. Antennas Propag., vol. 72, no. 2, pp. 1173-1181,   Feb. 2024.

[6]       J. N. Zhang, J. W. You, F Feng, W. Na, Z. C. Lou, Q. J. Zhang, T. J. Cui,   “Physics-driven machine-learning approach incorporating temporal coupled mode   theory for intelligent design of metasurfaces”, IEEE Trans. Microw. Theory   Techn., vol. 71, no. 7, pp. 2875-2887, Jul. 2023.

[7]       J. N. Zhang, S. Yan, F. Feng, J. Jin, W. Zhang, J. Wang, Q. J. Zhang, “A novel   surrogate-based approach to yield estimation and optimization of microwave structures   using combined quadratic mappings and matrix transfer functions,” IEEE Trans.   Microw. Theory Techn., 2022, 70(8): 3802-3816. (入选IEEE TMTT Popular Articles

[8]       J. N. Zhang, F. Feng, J. Jin, and Q. J. Zhang, “Adaptively weighted yield-driven   EM optimization incorporating neuro-transfer function surrogate with   applications to microwave filters,” IEEE Trans. Microw. Theory Techn., vol.   69, no. 1, pp. 518-528, Jan. 2021.

[9]       J. N. Zhang, F. Feng, W. Zhang, J. Jin, J. Ma, and Q. J. Zhang, “A novel training   approach for parametric modeling of microwave passive components using Pade   via Lanczos and EM sensitivities,” IEEE Trans. Microw. Theory Techn., vol.   68, no. 6, pp. 2215-2233, Jun. 2020.

[10]J. N. Zhang, C. Zhang, F. Feng, W. Zhang, J. Ma, and   Q. J. Zhang, “Polynomial chaos-based approach to yield-driven EM   optimization,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 7, pp.   3186-3199, Jul. 2018.(入选IEEE   TMTT Popular Articles

[11]J. N. Zhang, L. Chen, X. M. Lin, X. Y. Yu, Q. Ma,   W.-B. Lu, J. W. You*, and T. J. Cui*, “Feature-assisted neuro-CMT approach to   fast design optimization of metasurfaces,” IEEE Microw. Wireless Techn.   Lett., vol. 34, no. 5, pp. 467-470, May 2024.

[12]J. N. Zhang, J. Chen, Q. Guo, W. Liu, F. Feng, and Q.   J. Zhang, “Parameterized modeling incorporating MOR-based rational transfer   functions with neural networks for microwave components,” IEEE Microw.   Wireless Compon. Lett., vol. 32, no. 5, pp. 379-382, May 2022.

[13]J. N. Zhang, F. Feng, and Q. J. Zhang, “Rapid yield   estimation of microwave passive components using model-order reduction based   neuro-transfer function models,” IEEE Microw. Wireless Compon. Lett., vol.   31, no. 4, pp. 333-336, Apr. 2021.(入选IEEE MWCL Popular Articles

[14]J. N. Zhang, F. Feng, J. Jin, and Q. J. Zhang,   “Efficient yield estimation of microwave structures using mesh   deformation-incorporated space mapping surrogates,” IEEE Microw. Wireless   Compon. Lett., vol. 30, no. 10, pp. 937-940, Oct. 2020.(入选IEEE MWCL Popular Articles

[15]F. Feng, J. Xue,J. N. Zhang*M. Li, W. Liu, and Q. J. Zhang, “Concise and compatible MOR-based   self-adjoint EM sensitivity analysis for fast frequency sweep,” IEEE Trans.   Microw. Theory Techn., vol. 71, no. 9, pp. 3829-3840, Sept. 2023.

[16]W. Na, K. Liu, J. N. Zhang*, D. Jin, H. Xie, and   W. Zhang, “An Efficient Batch-Adjustment Algorithm for Artificial Neural   Network Structure Adaptation and Applications to Microwave Modeling,” IEEE   Microw. Wireless Compon. Lett., vol. 33, no. 8, pp. 1107-1110, Aug. 2023.

[17]J. Cui, F. Feng, J. N. Zhang*, L. Zhu, and Q. J.   Zhang, “Bayesian-assisted multilayer neural network structure adaptation   method for microwave design,” IEEE Microw. Wireless Compon. Lett., vol. 33,   no. 1, pp. 3-6, Jan. 2023.

[18]W. Na, K. Liu, W. Zhang, F. Feng, J. N. Zhang*,   H. Xie, D. Jin, and Q. J. Zhang, “Advanced EM optimization using   adjoint-sensitivity-based multifeature surrogate for microwave filter   design,” IEEE Microw. Wireless Compon. Lett., vol. 34, no. 1, pp. 1-4, Jan.   2024.

[19]L. Ma, Q. J. Zhang, W. Liu, and J. N. Zhang*,   “Advances in Hybrid Format-Based Neuro-TF Techniques for Parametric Modeling   of Microwave Components,” International Journal of Numerical Modelling:   Electronic Networks, Devices and Fields, IJNM, vol. 37, no. 2, pp. 1-23, May   2023.

[20]Weicong Na, J. N. Zhang*, et al., Parallel EM optimization using improved pole-residue-based neuro-TF   surrogate and isomorphic orthogonal DOE sampling for microwave components   design,International   Journal of Numerical Modelling: Electronic Networks, Devices and Fields, IJNM,   vol. 37, no. 2, pp. 1-16, Jul. 2023.

 

专利

[1]   一种用于吸波超材料快速设计的特征辅助优化方法, 2024-03-08, 中国, 受理号:202410267318.X

[2]   电磁场有限元快速频率分析的电磁灵敏度分析方法, 2023-5-2, 中国, 授权号:ZL   2021 1 0992300.2

[3]   一种用于求解电磁有限元方程的量子方法, 2022-11-15, 中国, 受理号:202211425125.X

[4]   一种用于超表面智能设计的物理驱动机器学习方法, 2022-10-11, 中国, 受理号:202211239682.2

[5]  物理驱动的大规模超材料的智能设计方法, 2024-05-16, 中国,受理号:202410608970.3

[6]   一种用于两端口微带结构的电磁参数化建模方法,2023-07-31,中国,受理号:202310942855.5

[7]   基于神经网络传递函数的代理模型建模方法,2023-06-15,中国,受理号:202310702791.1

[8]   基于空间映射算法的微波元件高频电磁设计方法,2023-08-30,中国,受理号:202311105069.6

 

科研项目:

(1)      国家自然科学基金,电磁计算与射频EDA仿真技术,2024.01-2026.12,在研,主持。

(2)      国家自然科学基金青年基金,基于双精度网格变形与并行空间映射的超表面快速设计优化方法,30万元,2025.01-2027.12在研,主持。

(3)      江苏省自然科学基金青年基金, 面向高频微波器件成品率驱动设计的先进统计建模和优化技术, 20万元, 2022.07-2025.06,在研, 主持。

(4)      南京市留学人员科技创新择优资助项目,智能电磁建模与微波EDA技术,3万元,2025.01-2027.12,在研,主持。

(5)      中电十所创新理论技术群基金,大掠入射角频选电磁结构设计,2024.09-2025.1236万元,在研,主持。

(6)      华为技术有限公司,Meta分频聚焦,80万元,结题,主持。

(7)    JWKJWJWKJW基础加强项目课题,全空域****420万元,在研,参与(项目骨干)。

(8)      国家重点研发计划,诊疗装备与生物医用材料重点专项,临床专科化小视野磁共振显微成像技术研究及样机研制,2050万元,在研,参与(项目骨干)。

(9)      中央高校优秀青年团队,可编程超表面和量子编码超表面,400万元,在研,参与(项目骨干)。

  欢迎对计算电磁学、电磁超表面设计优化、目标特性建模与优化设计、量子计算等方向感兴趣的本科同学加入课题组进行科研训练和毕业设计!课题组常年招收硕士、博士研究生,名额与经费充足,欢迎报考,并提供机会至国外知名大学交流访问!